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ABSTRACT
Due to the increasing volume, volatility, and diversity of data in
virtually all areas of our lives, the ability to detect duplicates in
potentially linked data sources is more important than ever before.
However, while research is already intensively engaged in adapt-
ing duplicate detection algorithms to the changing circumstances,
existing test data generators are still designed for small – mostly
relational – datasets and can thus fulfill their intended task only to
a limited extent. In this report, we present our ongoing research
on a novel approach for test data generation that – in contrast
to existing solutions – is able to produce large test datasets with
complex schemas and more realistic error patterns while being easy
to use for inexperienced users.

1 INTRODUCTION
The detection of duplicate records is a critical task in data clean-
ing [27, 34, 55], data integration [18, 22], and data linkage [15]. It has
been extensively studied during the last decades [47, 49, 60] and is
still subject of many research projects today [26, 28, 37–39, 46, 64].

Quality evaluation using appropriate test data is an essential
aspect in developing new duplicate detection algorithms and ad-
justing existing ones to specific use cases. The most adaptable and
flexible approach is to use a test data generator, such as DBGen [31],
GeCo [16], or EMBench++ [35]. The goal of these generators is to
create test data that resembles the required real-world properties
(e.g., sparsity or textuality [53]) as well as possible.

However, according to Gardners’ 4 „V“s, datasets are becoming
bigger (volume), more heterogeneous (variety), and are changing
faster (velocity) than ever before while often being incomplete and
error-prone (veracity). Thus, while the ever-increasing number of
data sources makes the integration of data more and more valuable,
the size, velocity, diversity, and error-proneness of the individual
sources make this task more and more challenging [49]. In conclu-
sion, duplicate detection will remain an important task in data man-
agement. But while there is already plenty of research on developing
new algorithms adapted to these circumstances (e.g., [23, 41, 57]),
there is little to no work addressing the generation of appropriate
test data (cf. Section 3). Therefore, we strive in our research for a
novel approach for test data generation that in contrast to existing
solutions

c1: scales vertically aswell as horizontally and thuswell enough
to generate datasets with millions of records,

c2: supports NoSQL datamodels (e.g., JSON or property graphs),
c3: provides an automatic preconfiguration to aid novice users,
c4: supports the generation of complex scenarios with multiple

data sources, each defined on a complex data schema, and

c5: utilizes an event-based error model to realistically simulate
temporal errors and complex error patterns as they result,
e.g., from outdated values and copying processes.

The remainder of this paper is structured as follows. First, we de-
scribe three different contexts with their individual characteristics
in which duplicate detection is applied. Then, we discuss existing
test data generators and their limitations in Section 3. Thereafter,
we present the idea of our new generation approach in Section 4
and discuss challenges as well as our ongoing research in Section 5.
Finally, we conclude the paper in Section 6.

2 APPLICATION CONTEXTS
Since the detection and elimination of duplicates is needed in vari-
ous contexts, the requirements for corresponding algorithms can
be very different. Roughly speaking, these contexts can be divided
into three categories:
• Data Cleaning: If we want to clean a single data source from

intra-source duplicates, all records conform to the same schema
and most of them are defined using the same formats, units and
language. Thus, the degree of heterogeneity is rather low and
divergences between duplicate records primarily result from
data errors and outdated values.

• Data Integration: If we want to remove inter-source dupli-
cates from an integration result, all records conform to the
same (target) schema, but many of them are defined in different
formats, languages, vocabularies and units of measurements.
Thus, the degree of heterogeneity is much higher than in a data
cleaning scenario. Depending on the quality of the integration
process this can also include differences on the schema level
(e.g., values have been mapped to wrong attributes).

• Data Linkage: If we want to link inter-source duplicates that
have not been integrated into a common target schema so far,
these records are not only defined in different formats, units,
etc., but also conform to different schemas. Thus, the given
records are much more heterogeneous than in the previous two
categories.
In the case of duplicate detection, the gold standard corresponds

to a duplicate clustering (one cluster per real-world entity) [42]. In
the case of duplicate elimination, we additionally need the correct
values for every cluster, the so-called golden record [17].

3 STATE OF THE ART & RELATEDWORK
Static test datasets (e.g., Magellan project [19]) are very useful when
it comes to getting a rough impression of an algorithm’s quality, but
cannot be used to systematically evaluate the algorithm’s behavior
with respect to changing conditions such as the data’s volume,
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quality, or complexity. Instead, this requires a test data generator
that allows to control the number of records, duplicates, and data
errors. Test data generators can be divided into two classes. Data
synthesis tools create a whole dataset including duplicates and
errors from scratch. In contrast, data pollution tools inject duplicates,
errors, and heterogeneities into an already existing dataset.
Existing Tools. Existing data synthesis tools, such as DBGen [31]
or the Febrl dataset Generator [14], are very efficient so that large
datasets can be generated in short time. However, since all values
are fictional and based on handmade generation rules, they struggle
to generate realistic data and are limited to a single domain. To
overcome this drawback, current approaches for general-purpose
data synthesis [25, 51] (data without duplicates and errors) use
Deep-Learning-techniques (e.g., GANs), but this comes with longer
runtimes. Data pollution tools, such as DirtyXML [54], GeCo [16],
TDGen [6], EMBench++ [35], BART [5], or Lance [58], are designed
to generate test data with realistic value patterns because real-world
data can be used as input. Moreover, if a broad spectrum of error
classes is supported, they are nearly domain-independent.
Limitations. Existing generators have several limitations:
• Data Size (cf. c1): Existing data pollution tools are strongly

limited with respect to their scalability (runtime as well as mem-
ory) making a generation of large datasets either impossible or
too time-consuming [32]. However, in times of big data, many
algorithms focus on scalability (e.g., [13, 30, 56, 57]) so that
an evaluation of their key functionalities requires large test
datasets with millions or even billions of records.

• Model Diversity (cf. c2): They are limited to relational (e.g.,
DBGen, TDGen), XML (e.g., DirtyXML), and/or RDF data (e.g.,
Lance) although the database landscape became extremely di-
verse in recent years and different kinds of NoSQL systems,
such as document stores or graph databases find increased use
in practice [29]. In addition, a matching of records across indi-
vidual data models is extremely relevant if we want to integrate
or link data in highly diverse environments.

• Number of Sources (cf. c4):Most of them generate a single
dataset, although the evaluation of duplicate detection algo-
rithms for data integration and data linkage requires the exis-
tence of multiple data sources having different schemas.

• Schema Complexity (cf. c4): Most of them generate a sin-
gle table, although in the last decades a lot of research (e.g.,
[8, 11, 20, 24, 56]) focused on a detection of duplicates in com-
plex datasets where records are connected via different kinds
of relationships (e.g., modeled by using foreign keys or RDF
triples). To the best of our knowledge, there is currently no
study which compares the quality of these algorithms with
respect to datasets of varying schema complexity.

• Automatic Configuration (cf. c3): Almost none of them pro-
vides any mechanism to compute parameter settings automat-
ically, although it is essential to enable a proper usage of the
generator by inexperienced users.

• Copying Patterns (cf. c5): There are several works (e.g., [21,
52]) that use copying relationships between data sources to in-
crease the quality of their duplicate elimination results. Existing
generators, however, inject errors into datasets by using simple
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Figure 1: Basic architecture of DaPo+

mechanisms and thus do not support the generation of complex
error patterns as they result from those copying processes.

• Outdated Values (cf. c5):With increasing velocity, outdated
data become a major quality issue [43]. However, existing gen-
erators are very bad at simulating a consistent appearance of
outdated values across individual records or data sources.

4 TEST DATA GENERATION IN SIX PHASES
In our previous work [32], we proposed the data polluter DaPo that
scales horizontally by using Apache Spark. The implementation
of this prototype, however, focused on the scalability aspect and
did not address the other shortcomings listed in Section 3. With
DaPo+, we are extending this prototype to support non-relational
data models, more complex data schemas, and more realistic error
patterns.

As shown in Figure 1, DaPo+ gets a single clean dataset (real-
world or synthesized) as input and produces either a cleaning, inte-
gration, or linkage scenario as output. In the cleaning scenario, we
generate a single dataset with intra-source duplicates. In the latter
two scenarios, we generate a predefined number of datasets with
intra- and inter-source duplicates and integrate these datasets into
a single target schema in case of the integration scenario. All three
scenarios also contain a so-called gold standard modeling the true
duplicate relationships between their records. To properly reflect
the variety, veracity, and velocity of many real-world use cases,
the output datasets contain a user-controlled degree of data errors
and may vary in their schemas. Since these datasets serve as data
sources in the individual scenarios, we also refer to them as such.

The architecture of DaPo+ includes six phases (see Figure 1).
In the first four phases, the input dataset is analyzed, prepared,
and enriched. In addition, a proper configuration of the actual
generation process is calculated based on the user’s specifications.
In the final two phases, the actual test data is generated.
1. Profiling. First, the input dataset is analyzed. The results are
a data profile and an enriched data schema. The profile contains
statistics about the individual attributes (e.g., length and number
of tokens) and relationships between records (e.g., frequency and
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type). The enriched schema contains important metadata such as
integrity constraints (e.g., functional dependencies), semantic col-
umn types, and temporal characteristics (e.g., update frequencies
and dependencies).
2. Preparation of Input Dataset. The transformation of the input
data to the data models and schemas of the generated data sources
as well as the injection of errors are usually much easier to han-
dle if these sources are modeled on a lower level of detail than
the input dataset (e.g., it is easier to merge two attributes than to
split one). Therefore, the profiling results are used to prepare the
input dataset and the enriched data schema. Among others, this
includes transforming it into a structured data model, normalizing
its schema, and splitting its attributes into several subattributes if a
clear separation between the corresponding values is possible.
3. Automatic Preconfiguration. Since DaPo+ is a complex system
and one of our goals is to support inexperienced users, a precon-
figuration is automatically derived from the enriched data schema.
This configuration contains a source profile history (i.e., a sequence
of source profiles where every profile has a validity period) for each
of the data sources that have to be created in the current generation
task. Each of the source profiles in turn consists of a representation
profile and an error profile. A representation profile determines in
which way which data is modeled within the described source. This
includes the source’s data model and schema as well as its scope (i.e.,
the relevant parts of the real-world). An error profile determines in
which way the source’s data is corrupted by errors, including the
amount of duplicates and the probabilities of certain error classes.
In addition to the source profile histories, a copying history is gen-
erated. It determines which sources copy which data from which
other sources during which period of time. This includes a pro-
gram that transforms data from the copied to the copying source
(including possible transformation errors). In case of an integra-
tion scenario, an additional integration process is required whose
configuration is called integration profile in Figure 1.
4. Generation of Data History. To enable the simulation of out-
dated values and data copying as defined in the corresponding
configuration files, a data history is generated based on the given
input data, the data profile, and the enriched data schema.
5. Source Creation & Pollution. The required number of data
sources is created based on the data history, the source profile
histories, and the copying history. To create these sources and
inject duplicates as well as errors into their data, we use our novel
event-based error model (see Section 5.4).
6. Result Generation. The final output (including the gold stan-
dard) is generated based on the previously generated data sources.
If an integration scenario is requested, these sources are integrated
into a single target schema by using the integration profile. To in-
crease the value of the costly generated data sources without much
additional effort, we use more than one target schema to generate
several integration scenarios in a single run.

5 CHALLENGES & ONGOING RESEARCH
In this section, we describe the various challenges we face in our
project and present the current status of our research in the develop-
ment of suitable solutions. Since our current prototype has already
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Figure 2: Sample hierarchy of error parameters. Automated
mappings from the few abstract high-level parameters to the
many low-level parameters support inexperienced users in
configuring the actual error probabilities.

proven to scale very well [32], we limit the following discussions
to the remaining challenges.

5.1 Data Profiling
The more metadata we have about the input dataset, the more
realistic are the data history, the schemas as well as the errors gen-
erated in the subsequent phases [48]. Therefore, we are developing
a data profiling component which is able to extract useful metadata
from the given input data. In case of NoSQL input data even whole
schema versions may have to be extracted [36].

As surveyed byAbedjan et al. [2], there is already a lot of research
on collecting database statistics, identifying semantic domains [33,
65], and detecting dependencies (exact, conditional, or approximate)
[7, 9, 12, 40, 50, 59, 62]. Most of these projects, however, focus on
relational data and only a few of them consider XML [63], RDF
[3], or JSON [44, 45] data. In addition, only few projects [1, 10, 43]
address the detection of temporal data characteristics. However, to
generate realistic data histories, we need to identify:
• Changes: when, how often, and how (what are allowed and

typical updates?) records change,
• Dependencies: intra-record (e.g., phone landline number↔

residence) and inter-record (e.g., residence of family members
or pay raise of co-workers) dependencies, and

• Integrity: constraints that are not allowed to be violated at
any point in time (e.g., a key has always to be unique) or over
all points in time (e.g., an old key value is never reused).
Our main focus is on the adaptation of existing profiling al-

gorithms to non-relational data models and the development of
profiling algorithms to detect temporal data characteristics. For
instance, intra-record dependencies can be modeled as association
rules, e.g., update of 𝐴 → update of 𝐵. Thus, our current solution
to identify those dependencies is to leverage existing techniques
for frequent-itemset mining (FIM) [61]. The identification, however,
is more difficult when there is a small time lag between the two
updates so that they are assigned to different FIM-transactions.
To address this problem, we calculate support values by using a
sliding window over the time-ordered list of transactions (i.e., all
transactions within the same window are treated as one).
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5.2 Automatic Preconfiguration
DaPo+’s large number of parameters will allow users to configure
the generation process in a flexible and detailed way and thus helps
them to generate test data that meet their requirements best. Setting
these parameters to proper values, however, requires a lot of domain
knowledge and experience in using this generator.

Since it is almost impossible to reduce the number of parame-
ters without reducing functionality, we intend to relieve users by
introducing a few abstract high-level parameters which are set by
them and then serve as a basis to calculate proper settings for the
actual (low-level) parameters by the system itself (before and/or
during runtime). To allow experienced users to invest more effort
in the configuration process, we introduce a hierarchy of abstract
high-level parameters so that they can enter the configuration at a
granularity level of their choice. We illustrate such a potential hier-
archy for the degree of pollution in Figure 2 where a single degree
of pollution for the whole dataset is at the top and the probabilities
of the actual error classes are at the bottom.

Our current efforts are aimed at identifying
• High-level Parameters that are intuitive, simple to under-

stand, and easy to map to the actual low-level parameters.
• Efficient Measures to calculate high-level parameters (e.g.,

the current degree of pollution), so that we are able to adapt the
corresponding low-level parameters dynamically at runtime.
A special challenge is the reasoning of the low-level parameters

that address the representation profile (data model, schema, etc.)
of the individual data sources. Here we are reusing concepts of
existing schema generators, such as iBench [4].

5.3 Generation and Reuse of Data Histories
A major goal of DaPo+ is to enable the generation of realistic out-
dated values and the simulation of copying processes between data
sources by using a data history. This history is either part of the
input or needs to be generated based on the profiling results.
Generation & Realism. We aim to generate a data history by
modifying the given input dataset, which is either a single snapshot
or already a data history. This includes the update or deletion of
existing records and the insertion of new records. In complex data
schemas, such modifications also address relationships between
records. To make these modifications as realistic as possible every
intermediate state of the generated data history has to comply with
the integrity constraints of the enriched data schema. This poses a
major challenge to the scalability of the generation process if we
consider constraints, such as uniqueness, that take large parts of the
dataset into account. To further increase the realism of the resulting
history, we build on the latest achievements in data synthesis [25]
and extend them by a proper handling of temporal aspects.
Reusability. If the input dataset comes without any history, we
want to adopt temporal data characteristics from a similar dataset
because having non-perfect training data is often still better than
having no training data at all. Therefore, we maintain a repository
of datasets and the update models (e.g., a set of rules) learned from
them. This requires appropriate measures to capture similarities
between datasets (e.g., based on summaries as they are calculated
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Figure 3: Event-based error model with three data sources.
Events are inserts, updates, and deletes of records, copying
processes, and changes in the schema and error profiles.

by DataSynthesizer [51]) and methods to adapt update models from
one dataset to another.

5.4 Source Creation & Pollution
The error model defines in which way the different histories (data,
source profile, and copying) are used to generate the individual
sources and to pollute their data. The error models typically used by
data pollution tools (including DaPo) take the input dataset as basis
and then subsequently replace single values (or whole records) with
copies modified by using a specific error class [35]. If we stick to this
approach, we can simulate outdated values in a consistent fashion
by using the data history as a kind of look-up table. Every time we
want to set a value to an old instance, we compute a past point in
time randomly and then replace the value’s current instance with
the corresponding instance from the data history.

These error models can be executed efficiently because they
pollute most parts of the dataset independently. However, they
have several limitations when it comes to temporal aspects. One
of them concerns the integration of time-variant copying patterns
because all data records are treated individually so that a time-
based consistency across these records is hard to achieve. Similar
problems apply to temporally triggered changes within the error
or representation profiles, such as an evolving data schema.
Event-Based Error Model. To address these problems, we devel-
oped an event-based error model (see Figure 3). The basic idea of
this model is to simulate the whole time-span from the beginning
to the end of the data history by processing events, which origi-
nate from the different input histories and the reactions of the data
sources to these events. Those events include:
• changes of real-world conditions (modeled by the data history)

provoking inserts, updates, and deletes in the data sources,
• copying processes triggered either periodically or by an insert,

update, or delete in one of the data sources, and
• changes of the representation profile (e.g., data model, schema,

or scope) or error profile (errors are fixed or new ones arise) of
an individual data source.

By doing so, the copying pattern can be incorporated easily by
considering every copying process as an event. Outdated values
are simply created when a data source misses to update its data
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according to a changing real-world condition. Errors can be intro-
duced into the data in different ways and at a very fine level of
granularity. Typos, formatting, or phonetic errors are immediately
inserted into the values when a data source reacts to an event (e.g.,
insert, update, or copying) or can be inserted afterwards to simu-
late errors in data maintenance. Dependencies between errors, as
they result when different values/records are affected by the same
faulty hardware (e.g., an infrared sensor) or software (e.g., an ETL
library) component, can be modeled and incorporated into the data
pollution process very smoothly. The same holds for time-variant
changes of such error sources (e.g., it can be simulated that after
some time a data source detected a damaged sensor and replaced
it). In summary, the event-based error model allows to model the
different aspects of a dynamic world in a very detailed manner.
Error Classes & Patterns. Due to the structural differences of
NoSQL data models and the different behavior of NoSQL data stores,
NoSQL datasets can contain other types of errors than relational
ones (e.g., an incorrectly sorted list in a JSON document). Therefore,
we are developing new error classes and mechanisms to integrate
them into the error model. An integration into the event-based
error model is quite simple, because we are able to mimic typical
processes that lead to errors in real life one-to-one.

6 CONCLUSION
In both research and practice, benchmarking is an important in-
strument to ensure algorithms of high quality. In this paper, we
discussed the limitations of existing test data generators for du-
plicate detection including the lack of support for complex error
patterns, temporal errors, and inexperienced users. We then pre-
sented our approach for a novel test data generator called DaPo+
and described how it addresses these issues. This approach intro-
duces a new set of challenges, such as the generation of a data
history, which we described along with our ongoing research to
solve them.
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