
Techcamp 2024, Hamburg, Germany

Wolfram „Wolle“ Wingerath

June 19, 2024

Slides Available at https://wolle.science

Most of the Time it Works Every Time

The Mindset Behind Using Probabilistic Data Structures

https://wolle.science/

Nomination:
GI-Dissertationspreis 2019

real-time databases
Nomination:

German Future Prize 2020
for a Web without loading times

DMC 2014
caching, OLTP benchmarking

(2 workshop papers)

VLDB 2020
real-time databases

(industry paper)

ICDE 2020
real-time databases, caching

(industry & demo papers)

EDBT 2018
real-time data management

(tutorial)CSRD 2016
NoSQL survey

(journal article)

Springer Book
Real-Time & Stream
Data Management

Springer Book
Fast & Scalable Cloud

Data Management

BTW 2019
NoSQL, data management,

Realtime databases
(tutorial & demo)

BTW 2015
caching, OLTP benchmarking

(2 papers)

BTW 2017
NoSQL & cloud data management

(tutorial)
SCDM 2017

real-time databases, OLTP benchmarking
(2 workshop papers)

VLDB 2017
query caching

(industry paper)

itit 2016
data stream processing survey

(journal article)

GI Junior
Fellow 2020

Winner

WWW 2021
Web performance,
data management

(tutorial)

EDBT 2021
data quality

(application paper)

GI Initiatives
startup platform &
handsfree coding VLDB 2022

A/B-testing at scale,
polyglot data management
(industry paper & tutorial)

Ongoing Research:
Real-Time Data Science
• anomaly & bot detection,
• click path prediction

• Realtime-as-a-Service,
• HPC storage optimization

• data quality & data synthesis,
• data science for quality of life …

EDBT 2022
schema transformation

(short paper)

JWE 2023
delta encoding for Web perf.
(extended research papers)

ICWE 2022
delta encoding for Web perf.

(research & demo papers)

2015

2020 2022

2019 2021

2016

2017

2018

2023
Uni Hamburg Baqend Uni Oldenburg

Continuous Web Performance
Analytics

Stream Processing

OLTP Benchmarking

NoSQL Stores

Real-Time Databases
1

2

3

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 2 / 28

Research Overview: Data Engineering for Data Science

https://wolle.science/

Skip Lists: Challenge & Basic Idea

Which problem do skip lists solve and in what ways are they superior to other list variants?1
Chance, Efficiency & Complexity Analysis

What is the probabilistic element in skip lists, how do they scale, and when should you use them?2
Trade-Offs in Other Probabilistic Data Structures

What are advantages of other probabilistic data structures like Bloom filters or Count-Min Sketches?3

Mini Lecture Outline

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 3 / 28

https://wolle.science/

Sorted List Applications

Database Sorting & Indexes, Dynamic

Collections, (Streaming) Aggregation

Algorithms & Performance Analysis

Binary Search, Tree Traversal, Sorting,

Probability Theory basics

Data Structures

Linked Lists, Arrays & Array Lists,

Self-Balancing Trees, Hash Maps

Probabilistic Data Structures

Skip Lists & Coin Flipping, Bloom Filters,

Count-Min Sketch, Trade-Offs & Use Cases

?

Learning
Goal!

Helpful Basic Knowledge

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 4 / 28

https://wolle.science/

Application Scenario: Working With a Sorted List

• Imagine sorted list of key-value pairs, e.g. ...

o a sorted set in Redis

o Member list on your Discord server

o a list of running medians over a large sliding window

Fab
i

B
etsy

K
im

Jan
e

A
sya

Sarah

W
ill

W
o

lle

B
en

n
i

values

19 21 25 266 9 12 173 keys

Redis Ltd. Redis Sorted
Sets, Redis Glossary (2023).

Matt Nowack. Using Rust to Scale Elixir for 11
Million Concurrent Users, Discord Blog (2019).

Raymond Hettinger. Regaining Lost Knowledge,
Deep Thoughts by Raymond Hettinger (2010).

Note: Values will not
be visualized on the

following slides!

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 5 / 28

https://redis.com/glossary/redis-sorted-sets/
https://redis.com/glossary/redis-sorted-sets/
https://discord.com/blog/using-rust-to-scale-elixir-for-11-million-concurrent-users
https://discord.com/blog/using-rust-to-scale-elixir-for-11-million-concurrent-users
https://rhettinger.wordpress.com/2010/02/06/lost-knowledge/
https://wolle.science/

Sorted Linked List:

o Search: 𝑂(𝑛)

o Update: 𝑂(1) (after search)

+ Fast updates

Challenge : Maintaining Order

• Why not just use standard list implementations?

vs. Sorted Array List:

o Search: 𝑂(𝑙𝑜𝑔 𝑛)

o Update: 𝑂(𝑛)

+ Binary Search

TAIL97 TAIL93HEAD 6 19 21 25 26

Can‘t we have a list that gives us both?
(Yes! Yes, we can!)

6? ×

6?

× ×

18 19 21 25 266 9 12 173

Insert value Insert value Move! Move! Move! Move!

Idea for list comparison inspired by:
Kevin Buchin. Skip Lists, YouTube (2021).

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 6 / 28

https://www.youtube.com/watch?v=NDGpsfwAaqo
https://wolle.science/

Skip List Idea : A Sorted Linked List Tuned For Binary Search

The perfect skip list is a sorted linked list with shortcuts for skipping item subsequences during traversal

• Normal Lane (level 1): standard sorted linked list where every node is connected to its successor

• Express Lanes (levels above): Only half of all nodes are promoted to the next level

o Level 2: add pointers that connect only every 2nd node

o Level 3: add pointers that connect only every 4th node

o ...

o Level 𝑙𝑜𝑔 𝑛: only 1 node that connects to HEAD and TAIL

TAIL3 12 197 25HEAD 26211796 TA
IL6

3 12 19
26

7
17

25H
EA

D

9 21
9 21 TA

IL

6
3 12 19

26
7

17
25H

EA
D

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

level 1

level 2

level 3

level 4

∞−∞

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 7 / 28

https://wolle.science/

TAIL3 12 197 25HEAD 26211796 TA
IL6

3 12 19
26

7
17

25H
EA

D

9 21
9 21 TA

IL

6
3 12 19

26
7

17
25H

EA
D

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

• Basic search algorithm:

(1) Start with the fastest express lane (top level)

(2) Keep advancing until the next step would overshoot, then climb down one level

(3) Repeat until you either find the target or reach the normal lane and find that it‘s not in the list

Success! × Failure!

Searching the Perfect Skip List

search 19
19<21?

19<9? 19<21?

19<17? 19<21?

level 1

level 2

level 3

level 4

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 8 / 28

https://wolle.science/

TAIL3 12 197 25HEAD 26211796 TA
IL6

3 12 19
26

7
17

25H
EA

D

9 21
9 21 TA

IL

6
3 12 19

26
7

17
25H

EA
D

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

• Basic search algorithm:

(1) Start with the fastest express lane (top level)

(2) Keep advancing until the next step would overshoot, then climb down one level

(3) Repeat until you either find the target or reach the normal lane and find that it‘s not in the list

• 𝑶(𝒍𝒐𝒈𝒏) Time Complexity: Search paths no longer than 2 𝑙𝑜𝑔 𝑛 nodes

o There are 𝑙𝑜𝑔 𝑛 levels

o Search will visit no more than 2 nodes per level!

Searching the Perfect Skip List

search 19

level 1

level 2

level 3

level 4

Success! × Failure!

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 9 / 28

https://wolle.science/

The Perfect Skip List: Space Efficiency

𝑶(𝒏) Space Complexity: The list has no more than 2n pointers

• The number of nodes across all levels can be used as an upper bound:

o 𝑛 nodes on level 1 (all nodes)

o
𝑛

2
nodes on level 2 (every 2nd node)

o
𝑛

4
nodes on level 3 (every 4th node)

o ...

o Entire list:

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

𝑛 +
𝑛

2
+
𝑛

4
+
𝑛

8
+⋯

geometric series

level 1

level 2

level 3

level 4

= 𝑛 + 𝑛 ∙ ෍

𝑘=1

∞
1

𝑘

𝑘

= 𝑛 + 𝑛 = 2𝑛

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 10 / 28

https://wolle.science/

The Perfect Skip List: But What About Updates ?

• Value updates are always efficient (search + replace node value)

• Insert and delete operations can be efficient!

o Example: Inserting 27

→ Structure remains intact with only minor changes (and removing it would be easy as well)

TA
IL

9
21

6
3 12 197

17
25

H
EA

D

26

TA
IL

27

Very cheap insert!

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 11 / 28

https://wolle.science/

The Perfect Skip List: But What About Updates ?

• Value updates are always efficient (search + node value change)

• Insert and delete operations can be efficient!

o Example: Inserting 27

→ Structure remains intact with only minor changes (and removing it would be easy as well)

• But they can also require (prohibitively) expensive restructuring to keep the perfect structure!

o Example: Inserting 20

→ Keeping the structure intact is not possible without rearranging many nodes

21

25
26

27

TA
IL

9
6

3 12 197
17H

EA
D

TA
IL

20

21
25

26

27

Extremely expensive insert!

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 12 / 28

https://wolle.science/

Probabilistic Structure for Increased Robustness

• Problem: efficient updates are not possible while maintaining the perfect skip list structure

• Approach: Requirement relaxation!

→ Exactly half of all nodes are promoted to the next level

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

Perfect Skip List (strict requirements)

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 13 / 28

https://wolle.science/

Probabilistic Structure for Increased Robustness

• Problem: efficient updates are not possible while maintaining the perfect skip lis structure

• Approach: Requirement relaxation!

→ Exactly half of all nodes are promoted to the next level

→ Expected performance remains the same as with perfect skip lists!

• Coin Flipping: When inserting a new node, we flip a coin for every promotion decision:

o Heads: The node gets promoted to the next level and we flip again ...

o Tails: No further promotion!

On average,

9
21 TA

IL

6
3 12 19

26
7

17
25

H
EA

D

Perfect Skip List

6
9

21 TA
IL

3 12 19
26

7
17

25

H
EA

D

6 21 TA
IL

3 12 19
26

7
17

25

H
EA

D

9

6 TA
IL

3 12 19
26

7
17

25

H
EA

D

9
21

6 TA
IL

3 12 19
26

7
17H

EA
D

9
21

25
6 TA

IL

3 12 197
17H

EA
D

9
21

25

21

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 14 / 28

https://wolle.science/

Deleting From a Skip List

6 TA
IL

3 12 197
17H

EA
D

9
21

25

21

17<6? 17<∞?

17<25?

17<9?

• Basic delete algorithm for removing a node X (e.g. 17):

(1) Perform search for the to-be-deleted node X until you find the node on the normal lane

(2) On your way down, remember X‘s predecessor on every level→

(3) ...

17<12?

Note: We find the node on level 2, but
we need to find every predecessor!

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 =

level 4

level 3

level 2

level 1

6
6
9
12

level 1

level 2

level 3

level 4

delete 17

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 15 / 28

https://wolle.science/

Deleting From a Skip List

6 TA
IL

3 12 197

H
EA

D

9
21

25

21 level 1

level 2

level 3

level 4

• Basic delete algorithm for removing a node X (e.g. 17):

(1) Perform search for the to-be-deleted node X until you find the node on the normal lane

(2) On your way down, remember X‘s predecessor on every level→

(3) Connect X‘s predecessors with X‘s successors and remove X

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 =

level 4

level 3

level 2

level 1

6
6
9
12

delete 17

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 16 / 28

https://wolle.science/

Inserting Into a Skip List

6 TA
IL

3 12 197

H
EA

D

9
21

25

21

insert 17

level 1

level 2

level 3

level 4

• Basic insert algorithm for adding a node X (e.g. 17) is very similar to the deletion algorithm:

(1) Perform search for the to-be-inserted node X until you find the position on the normal lane

(2) On your way down, remember X‘s predecessor on every level→ (as before)

(3) Coin flips to choose a level between 1 and max. level→

(4) Insert the node ...

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 = ⋯

level 1 level 2 level 3 level 4→ → →
×

17
17
17

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 17 / 28

https://wolle.science/

Inserting Into a Skip List

6 TA
IL

3 12 197

H
EA

D

9
21

25

21

insert 17

level 1

level 2

level 3

level 4

• Basic insert algorithm for adding a node X (e.g. 17) is very similar to the deletion algorithm:

(1) Perform search for the to-be-inserted node X until you find the position on the normal lane

(2) On your way down, remember X‘s predecessor on every level→ (as before)

(3) Coin flips to choose a level between 1 and max. level→

(4) Insert the node and update pointers on chosen levels

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 = ⋯

17

level 1 level 2 level 3 level 4→ → →
×

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 18 / 28

https://wolle.science/

So decreasing the p-value (promotion probability) ...

• ... means better storage efficiency (i.e. fewer levels and thus fewer pointers) ...

• ... but also generally slower searches (i.e. more steps on avg. search path)!

About Fair & Unfair Coins: Choosing the Optimal p-Value

William Pugh. Skip Lists: A Probabilistic
Alternative to Balanced Trees, CACM (1990).

p
Time Complexity

(Normalized
log Τ1 p n

p
)

Example

(
log Τ1 p n

p
for 𝑛 = 128)

Space Complexity

(
1

1−𝑝
, i.e. Avg. Pointers Per Node)

1

2
= 0.5 1

𝑙𝑜𝑔2 128

Τ1 2
= 7 ∙ 2 = 14 2

1

𝑒
≈ 0.368 0.942…

𝑙𝑜𝑔𝑒 128

Τ1 𝑒
≈ 4.852 ∙ 𝑒 ≈ 13.189 1.582…

1

4
= 0.25 1

𝑙𝑜𝑔4 128

Τ1 4
= 3.5 ∙ 4 = 14 1.333…

1

8
= 0.125 1.333...

𝑙𝑜𝑔8 128

Τ1 8
≈ 2.333 ∙ 8 ≈ 18.666 1.143…

1

16
= 0.0625 2

𝑙𝑜𝑔16 128

Τ1 16
= 1.75 ∙ 16 = 28 1.067…

p
Time Complexity

(Normalized
log Τ1 p n

p
)

Example

(
𝑙𝑜𝑔 Τ1 𝑝 𝑛

𝑝
for 𝑛 = 128)

Space Complexity

(
1

1−𝑝
, i.e. Avg. Pointers Per Node)

1

2
= 0.5 1

𝑙𝑜𝑔2 128

Τ1 2
= 7 ∙ 2 = 14 2

1

𝑒
≈ 0.368 0.942…

𝑙𝑜𝑔𝑒 128

Τ1 𝑒
≈ 4.852 ∙ 𝑒 ≈ 13.189 1.582…

1

4
= 0.25 1

𝑙𝑜𝑔4 128

Τ1 4
= 3.5 ∙ 4 = 14 1.333…

1

8
= 0.125 1.333...

𝑙𝑜𝑔8 128

Τ1 8
≈ 2.333 ∙ 8 ≈ 18.666 1.143…

1

16
= 0.0625 2

𝑙𝑜𝑔16 128

Τ1 16
= 1.75 ∙ 16 = 28 1.067…

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 19 / 28

https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://wolle.science/

Probabilistic Analysis : How Likely is a Slow Search ?

But 𝑂(𝑙𝑜𝑔 𝑛) with high probability (w.h.p.) does not give you any strict upper bound, so ...

• ... with some probability, search might still be slow!

• ... in the worst case, a skip list can degrade to a linked list with 𝑙𝑜𝑔 𝑛 times the normal pointers!

→ Search taking much longer than expected is extremely rare for lists large enough for it to matter!

William Pugh. Skip Lists: A Probabilistic
Alternative to Balanced Trees, CACM (1990).

You buy a lottery ticket and win (6 / 49).

You find a 4-leaf clover on your first try.

Search path is over 3 times longer than
expected for a skip list with 4096 items.

Ratio of actual to expected search cost.

P
ro

b
ab

ility

Cheryl Santa Maria. What Are Your Odds of
Finding a Four-Leaf Clover?, yahoo!sports (2023).

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 20 / 28

https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://sports.yahoo.com/odds-finding-four-leaf-clover-125349924.html
https://sports.yahoo.com/odds-finding-four-leaf-clover-125349924.html
https://wolle.science/

The Skip List: A Probabilistic Alternative to Balanced Trees?

Both provide 𝑂(𝑙𝑜𝑔 𝑛) time and 𝑂(𝑛) space complexity, so why should you choose one over the other?

→ Skip Lists

o Easy to Build: Simple operations without need for rebalance→ typically easier to implement

o Robustness: performance is unaffected by the order of insertions→ no „bad“ input sequences

→ Balanced Trees

o Predictability: Strict worst-case guarantees→ no unexpected execution time spikes

o Efficiency: Constants are often favorable, e.g. high branching factor→ shallower structure

William Pugh. Skip Lists: A Probabilistic
Alternative to Balanced Trees, CACM (1990).

„From a theoretical point of view, there is no need for skip lists.
Balanced trees can do everything that can be done with skip lists
and have good worst-case time bounds (unlike skip lists).“

–– William Pugh (1990)

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 21 / 28

https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/pugh-skiplists-cacm1990.pdf
https://wolle.science/

Other Probabilistic Data Structures

Bloom Filters, Count-Min Sketch, HyperLogLog,

Trade-Offs & Optimization Goals

Applications & Benchmarking

Implementation & Performance Shoot-Out,

In-Memory vs. Persistent Storage, Tuning

Advanced Skip List Variations

Optimizations, Layering Strategies,

Complexity Analysis

Topics for Upcoming Lectures

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 22 / 28

https://wolle.science/

Other Probabilistic Data Structures

Bloom Filters, Count-Min Sketch, HyperLogLog,

Trade-Offs & Optimization Goals

Applications & Benchmarking

Implementation & Performance Shoot-Out,

In-Memory vs. Persistent Storage, Tuning

Advanced Skip List Variations

Optimizations, Layering Strategies,

Complexity Analysis

Topics for Upcoming Lectures

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 23 / 28

https://wolle.science/

a b c d e f g h i j k l m n o p q r s t u v w x y z

Client 2

a b c d e f g h i j k l m n o p q r s t u v w x y za b c d e f g h i j k l m n o p q r s t u v w x y z

Bloom Filter Challenge: Checking for Membership

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 24 / 28

DB

• Problem: Checking the DB for username availability on every registration is expensive!

• Optimization: Only ask DB on positive Bloom Filter check!

o Trade-off: memory efficiency vs. false-positive rate

o Tuning parameters: number of bits & number of hash functions

• Hash collisions only produce false positives, but never false negatives!

Server

hash function
(e.g. hash function h1 that sets a single bit according to the first letter of a name)

a b c d e f g h i j k l m n o p q r s t u v w x y z

T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T T

User

Jane

Kim

Betsy

Fabi

Wolle

Will

Sarah

Asya

...

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T T

Has username „Zac“ been taken already?
→Definitely not!

(nobody with starting letter „z“)

Has username „Wu“ been taken already?
→Maybe!

(somebody with starting letter „w“ → DB lookup)

For every new username, the server ...
(1) ... computes hash(es)
(2) ... compares with Bloom Filter
(3) ... verifies uniqueness just for positive results via DB lookup

Client 1

Bloom Filter
(compressed representation of complete username collection)

Niema Moshiri: Advanced Data Structures:
Bloom Filters, YouTube (2020).

https://wolle.science/
https://www.youtube.com/watch?v=7On4XGuC_e4
https://www.youtube.com/watch?v=7On4XGuC_e4

a b c d e f g h i j k l m n o p q r s t u v w x y z

Client 2

a b c d e f g h i j k l m n o p q r s t u v w x y za b c d e f g h i j k l m n o p q r s t u v w x y z

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 25 / 28

Niema Moshiri: Advanced Data Structures:
Bloom Filters, YouTube (2020).

DB

• Problem: Checking the DB for username availability on every registration is expensive!

• Optimization: Only ask DB on positive Bloom Filter check!

o Trade-off: memory efficiency vs. false-positive rate

o Tuning parameters: number of bits & number of hash functions

• Hash collisions only produce false positives, but never false negatives!

Server

hash function
(e.g. hash function h1 that sets a single bit according to the first letter of a name)

a b c d e f g h i j k l m n o p q r s t u v w x y z

T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T T

User

Jane

Kim

Betsy

Fabi

Wolle

Will

Sarah

Asya

...

a b c d e f g h i j k l m n o p q r s t u v w x y z

T T T T T T T

Has username „Zac“ been taken already?
→Definitely not!

(nobody with starting letter „z“)

Has username „Wu“ been taken already?
→Maybe!

(somebody with starting letter „w“ → DB lookup)

For every new username, the server ...
(1) ... computes hash(es)
(2) ... compares with Bloom Filter
(3) ... verifies uniqueness just for positive results via DB lookup

Client 1

Bloom Filter
(compressed representation of complete username collection)

Bloom Filter Challenge: Checking for Membership

Wolfram Wingerath. Speed Kit: A Polyglot & GDPR-Compliant Approach For
Caching Personalized Content, ICDE (2020)

W. Wingerath, F. Gessert, E. Witt, H. Kuhlmann, F. Bücklers, B. Wollmer, N. Ritter. Speed
Kit: A Polyglot & GDPR-Compliant Approach For Caching Personalized Content, ICDE 2020

Speed Kit‘s web acceleration is only possible
because of the Cache Sketch, a probabilistic

data structure based on Bloom Filters!

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, N. Ritter: The Cache Sketch:
Revisiting Expiration-based Caching in the Age of Cloud Data Management, BTW 2025

https://wolle.science/
https://www.youtube.com/watch?v=7On4XGuC_e4
https://www.youtube.com/watch?v=7On4XGuC_e4
https://www.youtube.com/watch?v=kG6MNcluOjI
https://www.youtube.com/watch?v=kG6MNcluOjI
https://wolle.science/publications/wingerath-2020-icde-speed-kit.pdf
https://wolle.science/publications/wingerath-2020-icde-speed-kit.pdf
https://wolle.science/publications/wingerath-2015-btw-cache-sketch.pdf
https://wolle.science/publications/wingerath-2015-btw-cache-sketch.pdf

Count-Min Sketch Challenge: Estimating Item Frequencies

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 26 / 28

Niema Moshiri: Advanced Data Structures:
Count-Min Sketches, YouTube (2020).

Client 2

DB

• Problem: The space for keeping one message counter per user grows linearly with your user base!

• Optimization: Count hashes instead of users!

o Trade-off: memory efficiency vs. overcounting error

o Tuning parameters: number of counters & number of hash functions

• Counts are upper bounds, since hash collisions only lead to overcounting!

Server

create an array of counters
(e.g. using hash functions h1 and h2 that determine the counter position by using the first and last letter of a name, respectively)

User

Jane

Kim

Betsy

Fabi

Wolle

Will

Sarah

Asya

...

How do we query Wolle‘s message count?
→ Take the min of his h1 and h2 counters!

When estimating the messages sent by a user, the server ...
(1) ... computes counter positions (hashes)
(2a) ... takes the smallest counter as an upper bound (query)
(2b) ... or increments all counters (insertion)

Count-Min Sketch
(compressed representation of the message counters per user)

h1

h2

a b c d e f g h i j k l m n o p q r s t u v w x y z

a 1 1 1 1 1 2

1 2 1 1 1 1 1

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 1 1 1 1 1 2

a b c d e f g h i j k l m n o p q r s t u v w x y z

How do we handle a new message by Fabi?
→ Increment the h1 and h2 counters!

Client 1

a b c d e f g h i j k l m n o p q r s t u v w x y z

a 1 2 1 1 1 2

1 2 1 2 1 1 1

https://wolle.science/
https://www.youtube.com/watch?v=mPxslXpg8wA
https://www.youtube.com/watch?v=mPxslXpg8wA

• Skip Lists combine elements from sorted linked lists and array lists to achieve

o Simplicity: straightforward implementation, extension & modification

o Efficiency: 𝑂(𝑙𝑜𝑔 𝑛) Time Complexity for inserts, deletes & search with high probability

o Robustness: no „bad“ sequences, no rebalancing, no sophisticated tuning required!

• Probabilistic Data Structures in general are used across a variety of Applications including

o Order-Preserving Dynamic Collections (Skip Lists)

o Efficient Membership Tests Without False Negatives (Bloom Filters)

o Estimating Upper Bounds for Item Counts (Count-Min Sketch)

o Many More, e.g. Counting Unique Visitors (HyperLogLog)

Summing up : Probabilistic Data Structures Are Awesome!

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 27 / 28

https://wolle.science/

Slides: https://wolle.scienceWolfram Wingerath (Techcamp in Hamburg, June 19, 2024) 28 / 28

Looking for a job in research?
Apply as a research assistant and
do your PhD in my group NOW!

https://uni-oldenburg.de/awesome-job

https://wolle.science/
https://uni-oldenburg.de/awesome-job

	Intro
	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28

