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ABSTRACT
In an era of rapidly advancing data-driven applications,
there is a growing demand for data in both research and
practice. Synthetic data have emerged as an alternative
when there are not enough real data available or when
these data may not be shared (e.g., due to privacy regu-
lations). Synthesizing tabular data presents unique and
complex challenges, especially handling (i) missing val-
ues, (ii) dataset imbalance, (iii) diverse column types,
and (iv) complex data distributions, as well as preserv-
ing (v) column correlations, (vi) temporal dependencies,
and (vii) integrity constraints (e.g., functional dependen-
cies) present in the original dataset. Although signif-
icant progress has been made recently in the develop-
ment of generational models, there is no one-size-fits-
all solution for tabular data today and choosing the right
tool for a particular use case remains a difficult task.

In this paper, we survey the state of the art in Tabular
Data Synthesis (TDS) and examine user needs by defin-
ing a set of functional and non-functional requirements.
We also evaluate the reported performance of 37 TDS
research tools on these requirements, develop a tool se-
lection guide to help users find a suitable TDS tool for
their use case, and identify open challenges in TDS re-
search, especially with respect to data management.

Keywords
Tabular data synthesis, Deep generative models, Func-
tional requirements, Customized tool selection

1 Introduction
Nowadays, data are one of the most valuable resources
but they are often not available in the required quantity
or may not be shared between data consumers to protect
data privacy or business interests. This hinders digital
innovation and leaves a lot of potential untapped [84,
102]. The generation and sharing of synthetic data has

emerged as a solution to this problem [27, 29, 43] and
is therefore an important tool in many areas of data sci-
ence, data engineering, and data management.

In the last few years, data generation has gained new
momentum with the success of generative deep learn-
ing, particularly for generating synthetic images [23]
and texts [89]. Although less visible in today’s media
culture, tabular data plays an essential role in many pro-
cessing tasks. In this study, we consider tabular data
according to the relational data model [20, 32], i.e., a
tabular dataset consists of one or more tables, which in
turn are organized into rows (or records) representing in-
dividual data points and columns representing different
features of those data points.

Two branches of research have emerged for the gener-
ation of tabular data, which deal with different use cases:
The first branch involves the controlled generation of
new data based on schema information, statistics, and
domain knowledge in order to benchmark newly devel-
oped database technologies such as hardware compo-
nents, join operators, or query optimization strategies.
Although the generated data should be realistic, the fo-
cus of these approaches is more on efficient, distributed,
and scalable generation techniques to enable the cre-
ation of highly challenging benchmark datasets. Many
of these approaches are rule-based and tailored to a spe-
cific domain [10, 18, 38, 45, 48, 81, 88].

The second branch focuses on replicating the charac-
teristics of a given (real-world) dataset as accurately as
possible. This is often combined with the additional re-
quirement that no sensitive information from this dataset
may be disclosed. This applies in particular to person-
related information as we have it in medical [17, 43] or
financial data [86]. The idea behind this is that the syn-
thetic dataset can now be shared with others so that they
can use it instead of the real dataset (e.g., for data re-
purposing or to outsource data-driven tasks), but the in-
sights gained from their analyses also apply to the real
dataset. A common area of application is machine learn-
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ing, in which an ML model trained on synthetic data is
applied to real data [62, 108].

In our study, we focus on the second branch of re-
search which is usually called tabular data synthesis
(TDS) [41, 55, 111, 116, 118]. Based on our research,
there is currently no TDS tool that works well across
all applications. Moreover, although commercial plat-
forms, such as the Synthetic Data Vault (SDV) [85] or
Gretel AI [7], choose and adapt TDS tools, there is cur-
rently no benchmark to measure a TDS tool’s “fitness
for use”, which refers to the capability of the tool to
meet the specific functional and non-functional require-
ments of a certain use case. Thus, selecting a TDS tool
for a specific use case is a major challenge. This ap-
plies in particular to data management, which has addi-
tional functional requirements compared to other appli-
cation areas such as machine learning. Especially im-
portant here is the ability to generate data with complex
schemas (instead of individual tables) and to preserve
integrity constraints, such as functional dependencies.

The main objective of our study is to provide the basis
for evaluating the suitability of TDS tools for use-case
specific requirements. Our contributions are:
c1: a survey of current research on TDS,
c2: the definition of functional and non-functional

requirements that allow to assess a TDS tool’s
suitability for a specific use case,

c3: an assessment of 37 tools with respect to their re-
ported performance on those requirements,

c4: a tool selection guide to help users find a suitable
TDS tool for their use case, developed by compil-
ing the reported performance of the leading TDS
tools on such requirements, and

c5: an overview of research gaps especially with re-
spect to use cases in data management.

The remainder of the paper is structured as follows.
Section 2 presents related work. In Section 3, we de-
scribe the main purposes for TDS and discuss poten-
tial use cases in data management. Section 4 describes
the main challenges in TDS and its differences to image
and text generation. These two sections are the basis for
the identification of the functional and non-functional
requirements in Section 5. While Section 6 provides
background on TDS tools and their underlying models,
Section 7 gives a brief overview of the evaluation of syn-
thetic tabular data. The results of our study (i.e., assess-
ment matrices, decision guide, and research gaps) are
presented in Section 8. Finally, Section 9 concludes the
paper and gives an outlook on our upcoming research.

2 Related Work
The Synthetic Data Vault (SDV) [85], Gretel AI [7], and
Mostly AI [49] are platforms for the generation of tabu-

lar data. These platforms must choose from the available
tools to address the widest range of use cases possible.
However, these platforms do not report on the specific
limitations of those tools. In contrast, our goal is to cre-
ate a framework that allows to identify use-case specific
requirements and determine those limitations.

Several surveys served as input to our work to iden-
tify the predominant TDS models and tools. Hernandez
et al. [43], Fan et al. [27], Figueira et al, [29], and Bro-
phy et al. [9] explored the use of Generative Adversar-
ial Networks (GANs) for health records, categorical and
numerical data types, and time series generation. Koo
and Kim [60] reviewed generative diffusion models for
tabular data, paralleling Lin et al. [68], who focused on
time-series diffusion. Fonseca and Bacao [30] recently
provide an extensive survey on tabular data synthesis in-
cluding an evaluation of 70 tools across six different ma-
chine learning problems. However, while our focus is
on various tools from the field of generative deep learn-
ing (including GANs, autoencoders, probabilistic diffu-
sion, graph neural networks, and transformers), the only
deep learning approaches they consider are GANs and
autoencoders. Moreover, they do not address the prob-
lem of finding the most suitable tool for a specific use
case and therefore do neither define functional and non-
functional requirements for tabular data synthesis nor
evaluate their tools in terms of those requirements.

In summary, none of these surveys provide a compar-
ison of deep learning approaches (see Figure 1) as we
do in this paper. Additionally, they do not provide any
insights into how users can assess a tool’s fitness for use,
or guide them in the process of choosing a suitable TDS
tool for their specific use case.

3 TDS Purposes and Use Cases
Based on our literature review, we pinpointed five pur-
poses why users need to synthesize tabular data based
on a given use-case specific dataset:
• Privacy-Preserving Data Sharing: Many domains

contain sensitive data, requiring effective measures to
protect privacy when these data need to be shared or
reused. For instance, a hospital would like to share its
electronic health records (EHRs) for external analy-
ses and therefore creates synthetic patient records that
closely resemble their real patient records but do not
correspond to actual patient data.

• Missing Value Imputation: Datasets often have in-
complete entries, which can distort analyses. In our
EHR example, a patient’s smoking status may be
missing, which is vital information for predicting the
risk of heart disease. TDS allows users to fill such
gaps with meaningful values, ensuring intentional
data completeness [79].
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Figure 1: Classification of the data-driven TDS models included in our study.

• Class Rebalancing: Datasets may have a few classes
which significantly outnumber others, risking bias to-
wards these dominant classes. For example, a dia-
betes dataset may contain more non-diabetic than di-
abetic patient records. This discrepancy leads to pre-
diction models being biased towards the non-diabetic
class. TDS can rectify this imbalance by generating
additional synthetic diabetic patient records.

• Dataset Augmentation: TDS can be used for data
augmentation, where the goal is to expand datasets for
enhancing ML model robustness and generalization.
In our EHR example, this would mean synthesizing
records for new patients from all classes.

• Customized Generation: The generation of syn-
thetic datasets must sometimes be directed by exter-
nal factors, in order to create specific scenario data.
For instance, in the EHR context, researchers might
want to simulate a situation in which certain disease
progressions occur more frequently.

Sharing data while preserving privacy may be the
only reason for synthesis, but it can also be combined
with one of the other purposes. Although tools for class
rebalancing or missing value imputation can usually be
adapted for data augmentation and vice versa, it is im-
portant to choose the right tool for the job. Otherwise,
important relationships in the data may not be preserved
or the workload and computational costs may increase.

In summary, use cases for TDS basically include all
areas in which use-case specific data must be processed
or shared and either not enough data are available to
achieve high-quality processing results or the available
data may not be shared, e.g. for data privacy reasons.

From the perspective of data management, interest-
ing use cases are in particular those in which data man-
agement tasks have to be outsourced to an external ser-
vice provider, but the corresponding instance data has

to be kept confidential. Those tasks include schema de-
sign [58, 82], query optimization [61, 77], data profil-
ing [1] (e.g., foreign key discovery [16,113]), and index
tuning [106]. Since the execution of these tasks depends
heavily on the characteristics of the instance data and the
original instance data are not available, the synthesized
instance data should compensate for this deficiency.

4 Tabular Data Synthesis Challenges
For all domains of data synthesis, whenever privacy pro-
tection is of interest, one challenge is the Privacy vs.
Utility trade-off [83]. Data utility refers to the ability of
the data to serve its intended purpose effectively. Gener-
ating synthetic samples while preserving privacy is chal-
lenging because enhancing privacy often diminishes the
utility of the data, and vice versa [33]. The level of pri-
vacy can be achieved using Differential Privacy (DP), a
rigorous mathematical framework for guaranteeing pri-
vacy in statistical analysis [26].

TDS tools must capture and replicate the main char-
acteristics of the original (real) dataset. This includes
the column types and correlations between columns.
This is challenging because of the following reasons:
• Missing values: Accurately capturing the character-

istics of a dataset with information gaps is challeng-
ing, as these gaps represent a loss of information and
the generated data may poorly reflect the true correla-
tions between the columns of the dataset.

• Imbalanced datasets: Capturing the characteristics
of minority classes is particularly complicated when
these classes are underrepresented. As a consequence
of this under-representation, some algorithms may
over fit the data, suffer from phenomena such as
“mode collapse”, where some classes are not gen-
erated at all [37], or generate unrealistic samples of
the minority classes [14]. However, for applications
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that aim to identify outliers, such as intrusion detec-
tion [75], it is very important to generate accurate
samples of these minority classes.

• Diversity of column types: Unlike images, tabular
datasets usually contain a mix of different column
types, such as numerical, categorical, temporal, text,
or even mixed types consisting of values from differ-
ent basic types. Different column types might require
distinct pre-processing or handling techniques.

• Complex column distributions: The distribution of
a column contains its spread, tendencies, and patterns
in the data, providing valuable insights into its char-
acteristics and relationships with other columns. Cap-
turing complex distributions is challenging because
traditional methods such as simply modeling mean
and standard deviation may not be sufficient to char-
acterize non-Gaussian distributions.

• Temporal Dependencies: The temporal dimension
of time series data introduces an additional layer of
complexity. Two particular challenges for time series
generation are discrete time series, because backprop-
agation presents problems [9], and long-term depen-
dencies, because their discovery and modeling require
extra memory [69].

5 User Needs: TDS Requirements
Due to the wide range of possible applications for tab-
ular data synthesis and the special characteristics of in-
dividual datasets, each use case can have very different
requirements. Therefore, based on the purposes men-
tioned in Section 3 and challenges described in Sec-
tion 4, we have determined a list of twelve possible func-
tional and non-functional requirements that users may
impose on a TDS tool (see Table 1).

The first four functional requirements address (i) the
number of non-independent columns the tool can syn-
thesize, (ii) the types and (iii) distributions of columns
the tool is able to handle as well as (iv) whether the
tool preserves correlations between columns. Early at-
tempts of tabular data synthesis started with basic sta-
tistical models, random sampling, and rule-based ap-
proaches [8], which can only generate one or two depen-
dent columns at once, or they focused either on only cat-
egorical or numerical columns [14]. In addition, many
of these attempts used simplified models that assume
all columns to be Gaussian distributed. All of the TDS
tools examined in this study are capable of working with
multi-column datasets. However, they differ in the types
of columns, distributions, and correlations they can cap-
ture and replicate.

The fifth functional requirement addresses temporal
dependencies. State-of-the-art TDS tools that are capa-
ble of handling complex column distributions and cor-

relations (e.g., [62,99,118]) do not address temporal de-
pendencies. In contrast, TDS tools developed specifi-
cally for time series data differ in whether and how well
they can preserve short- and long-term dependencies.

The requirement to preserve integrity constraints
refers to the ability of a TDS tool to create a synthetic
dataset that does not violate the rules enforced on the
original dataset, such as unique column combinations
(UCCs) or functional dependencies (FDs) [33]. Inter-
table correlations refer to correlations between columns
from different tables whose records are linked by for-
eign keys. While machine learning usually operates
on individual tables, complex schemas are the norm in
database management. In addition, integrity constraints
play a key role in many data management tasks (e.g.,
FDs in schema design). Inter-table correlations and in-
tegrity constraints are therefore particularly important
from a data management perspective

The group of non-functional requirements refers to
factors that are not directly related to how well the
TDS tools capture and replicate the characteristics of
a dataset, but to operational properties. This includes
factors such as (i) how much configuration is needed
before the tools can be properly used, (ii) how much
pre-processing of the input data is required so that the
tools can process them, (iii) what hardware compo-
nents (e.g., GPUs) are required for executing the tools,
(iv) how much resources (e.g., runtime, memory, elec-
trical power) the tools need, and (v) how well the tools
scale with larger datasets.

6 TDS Models and Tool Capabilities
In this section, we give an overview of existing TDS
models and tools. We adopt the classification of TDS
models into process-driven and data-driven models
from [35] and extend it with sub-categories of data-
driven models as shown in Figure 1. As explained in
Section 1, our focus is on data-driven TDS tools, which
synthesize data using a use-case specific (real-world)
dataset as input. The following sub-sections provide
a description of the tools’ underlying models as well
as their general strength and weaknesses. The detailed
assessment of the tools’ performance with respect to the
functional requirements is presented in Section 8.

6.1 Imputation-based Models
Many imputation-based TDS tools use either multiple
imputation or masking techniques [47, 90, 103]. Mul-
tiple imputation is originally a model to handle miss-
ing values, where each missing value is replaced by two
or more synthetic values [93]. It has two steps: First,
it constructs multiple synthetic populations. Then, it
draws a random sample from each synthetic population
and releases those samples.

SIGMOD Record, December 2024 (Vol. 53, No. 4) 21



Table 1: Potential functional and non-functional requirements for TDS Tools.

Requirement Possible Categories

Functional

Ability to work with multiple non-
independent columns.

Single-column, two-column, or multi-column datasets.

Ability to handle different types of columns
effectively.

Categorical, numerical (continuous and discrete), temporal, text, and
mixed (e.g., categorical and numerical).

Ability to accurately capture and replicate
univariate column distributions.

Gaussian and other typical statistical distributions (uniform, exponen-
tial, Poisson, binomial, logistic, etc.), skewed, multinomial.

Ability to preserve correlations between two
or more columns.

Joint and conditional probabilities of subsets of columns.

Ability to preserve temporal dependencies
between columns.

Short-term and long-term dependencies.

Ability to preserve integrity constraints de-
fined at different levels of data granularity
(e.g., values, columns, records, tables, or the
entire dataset).

Rules or conditions enforced. They can concern values from one record
(intra-record) or values from multiple records (inter-record). Exam-
ples are unique column combinations (UCCs), functional dependencies
(FDs), inclusion dependencies (INDs), or denial constraints (DCs).

Ability to preserve inter-table correlations. Parent-child relations and relationships between multiple tables result-
ing from foreign key references.

Non-functional

Level of configuration the tool needs. Represents the ability of the tool to synthesize datasets without the need
for extensive configuration or fine-tuning. It represents its ”out-of-the-
box” capability.

Level of pre-processing the tool needs. Represents the need for pre-processing the input data. For example,
handling missing values, normalizing columns to similar scales and
ranges to support convergence, or encoding columns into a format that
can be effectively processed by the tool.

Hardware the tool needs. Represents the technical requirements of the TDS, including the need
for a GPU for training.

Resource efficiency of the tool. Represents the time and memory required to synthesize a dataset.
(time and memory)
Scalability of the tool. Represents the ability to efficiently handle increasingly large datasets

while maintaining high performance and accuracy.

Imputation is easy to understand and implement, and
it does not require high computational resources. How-
ever, it is highly sensible to bias, it can produce ex-
treme samples, and it can contain several repeats of the
observed records [91]. Finally, imputation-based ap-
proaches do not model the underlying joint distributions
of the real dataset, which means they cannot preserve its
semantic integrity [63].

6.2 Sampling Models
Data synthesis is often used to rebalance datasets. The
straightforward solution to this problem is the augmen-
tation with additional records of the minority class,
known as random over-sampling. Accordingly, ran-
dom under-sampling removes records from the majority
class. Random over-sampling introduces an increased
risk of over-fitting and random under-sampling fre-
quently results in the loss of valuable information intrin-
sic to the original dataset [8]. Tools such as the Synthetic
Minority Over-Sampling Technique (SMOTE) [14], can
be used for class rebalancing, but also to generate com-
plete synthetic datasets. The vanilla version only works
for continuous data and the synthesized records are lin-
early dependent on the original minority class records,
often leading to over-fitting [8]. Variations of SMOTE
address these limitations and still generate samples with
low computational resources [62]. The implementation
presented in [39] combines the strengths of several other

SMOTE variations [24, 40, 96], including the ability to
handle categorical columns.

6.3 Discriminative Models
In ML, a distinction is made between discriminative
and generative models. Discriminative models estimate
the conditional probability of the output given the in-
put. However, they do not learn the interdependence
between all the columns (target and non-target). Dis-
criminative models can be leveraged for TDS using
the learned conditional probabilities. One example in
privacy-preserving data mining are clustering-based al-
gorithms that generate synthetic data while aiming to
maintain certain properties of the original data [70].
However, these models have limitations in handling
more intricate data characteristics, because they are built
to estimate the probability that an observation belongs
to a class and not to learn the complete distribution [31].

6.4 Generative Models
Generative models aim to learn the joint probability dis-
tribution of all columns [36]. Therefore, they are suit-
able for all the purposes introduced in Section 3.

6.4.1 Shallow Generative Models
Shallow generative models have simpler architectures
with few or no layers of abstraction or transformation.
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We consider Copula models and Probabilistic Graph-
ical models (PGMs) the most relevant for TDS.

Copulas are mathematical functions that link multivari-
ate joint distributions to their one-dimensional marginal
distributions [80]. Simply put, a copula separates the
analysis of a multivariate distribution into two parts:
the individual behavior of each variable, known as the
marginals, and a function that binds the marginals back
together, capturing how they relate with each other.
Tabular Copula [3] is a Python package that uses Gaus-
sian Copulas [65] to produce synthetic datasets. Its
results preserve the statistical properties of the original
data. However, as demonstrated in [28], Gaussian cop-
ulas can have problems capturing extreme dependency
structures in the data.

PGMs represent complex distributions through graphs
where nodes represent variables and edges represent
probabilistic dependencies between these variables [59].
They are widely used because they explicitly show the
dependencies in the data. However, exact inference be-
comes computationally infeasible with large datasets.
Popular PGMs in TDS can be subdivided into Bayesian
networks and Markov Random Fields.
Bayesian Networks (BN) are PGMs that represent a set
of variables and their conditional dependencies via a di-
rected acyclic graph (DAG). PrivBayes [112] is a popu-
lar TDS tool for data privacy. However, it does not pre-
serve data utility and correlations as well as other, more
complex tools [74]. BNs are also used to complement
other tools, for example to integrate semantic informa-
tion on the input data into the learning process [114].
Markov Random Fields (MRF) are undirected graph-
ical models, which can model complex interactions and
dependencies without assuming a specific direction of
influence. One example is PrivMRF [12], which, like
PrivBayes, ensures differential privacy, but better pre-
serves data utility. Another example is PrivLava [13],
which aims to synthesize tabular data with complex
schemas where multiple tables are connected via for-
eign keys under differential privacy. It also reports
better data utility results for single tables than PrivMRF
but at the expense of higher computational costs.

6.4.2 Deep Generative Models
Deep Generative Models are composed of multiple neu-
ral layers that enable the model to learn hierarchical rep-
resentations. They leverage deep learning techniques to
model the joint probability distribution of a dataset.

Variational Autoencoder (VAEs) [57] learn an en-
coder network that maps the input data to a latent space
and a decoder network that reconstructs the original
input from this latent space. Synthetic datasets are gen-
erated by sampling new records from the latent space.

In TDS, VAEs preserve the characteristics of the
dataset better than sampling and shallow generative
models [108]. Nevertheless, VAEs often over-simplify
the distributions inherent in the original data because
they use a standard Gaussian distribution for the latent
space [78]. Additionally, VAEs struggle with discrete or
categorical columns because they use a reparametriza-
tion trick for backpropagation, which only works well
for continuous latent spaces [51].

Examples of TDS tools are tabular VAE (TVAE) [108],
discrete VAE [92], which addresses the limitation with
discrete columns, DP-VAEGM [15] for differential pri-
vacy, and TimeVAE [22] for generating multivariate
time series data.

Generative Adversarial Networks (GANs) [37] con-
sist of two main neural networks: a generator and a dis-
criminator. The generator uses random noise as input
and generates synthetic data samples, while the discrim-
inator aims to distinguish between real and synthetic
samples. During training, the generator and the discrim-
inator are trained in an adversarial manner, with the gen-
erator attempting to generate data that fools the discrim-
inator, and the discriminator striving to correctly iden-
tify the generator’s fake samples. Through this compet-
itive process, and using their implicit modeling of the
data distribution, GANs learn to generate realistic and
high-quality synthetic data samples that closely resem-
ble the distribution of the real training data [118].

Tools such as medGAN [17], DP-GAN [107], and
PATE-GAN [52] were specifically developed for privacy-
preserving TDS. However, they sacrifice data utility and
report lower performance than a vanilla GAN for many
ML tasks [52]. TableGAN [83], TGAN [109], and CT-
GAN [108] are able to achieve high data privacy with
better data utility. CTGAN also uses a conditional vec-
tor to allow controlling the generated classes. Building
upon them, the two predominant GAN tools nowa-
days are CTAB-GAN [117] and its successor CTAB-
GAN+ [118]. They can both handle mixed data types,
imbalanced datasets, and complex distributions.

GANBLR and GANBLR++ [114, 115] address the
fact that GANs are not interpretable and do not exploit
any prior knowledge on explicit feature interactions.
C3-TGAN [41] introduces mechanisms to preserve ex-
plicit attribute correlations and property constraints.
Both approaches use Bayesian networks.

Most of the approaches for time series data use Re-
current Neural Networks (RNNs) [94], especially of
the type Long Short-Term Memory (LSTM) [46].
TimeGAN [110] combines a GAN model with Au-
toregressive models (AR) but it chunks the dataset
into 24 epochs, which is not adequate for long-term
dependencies [69]. DoppelGANger [69] is a custom
workflow developed to address the key challenges of
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time series GAN approaches, such as long-term depen-
dencies, complex multidimensional relationships, mode
collapse, and privacy.

Normalizing Flows (NF) use invertible and differen-
tiable transformations to convert simple distributions,
such as Gaussians, into complex ones for probabilistic
density modeling. This process is flexible and allows
exact likelihood estimation but is computationally inten-
sive. For this reason, there are not many NF TDS tools.
Durkan et al. [25] demonstrated the effectiveness of NF
on tabular and image data synthesis. Yet, Manousakas et
al. [73] reports that NF underperform compared to mod-
els such as CTGAN [108] and TVAE [108]. Kamthe et
al. [54] applied NF to learn the copula density for TDS,
effectively capturing relations among columns. How-
ever, it performs worse than TVAE [108].

Graph Neural Networks (GNNs) are neural network
architectures for processing graph-structured data. They
handle irregular data structures using relationships be-
tween entities (nodes) and their connections (edges) in a
graph. For TDS, records are converted into graph nodes,
connected by edges based on their similarity or domain-
specific knowledge. This transformation allows GNNs
to learn node representations that capture inter-record
and inter-column correlations.

GOGGLE [71] is a TDS tool that replaces typical
VAE decoder architectures with GNNs. It achieves re-
alistic samples, highlighting the potential of GNNs in
the synthesis of complex, domain-aware tabular data.
However, GNNs can be computationally and memory-
intensive, especially with large graphs [50].

Diffusion Probabilistic Models (DPM) [98] are in-
spired by non-equilibrium physics and have gained sig-
nificant importance with the improvements introduced
by Yang et al. [100] and Ho et al. [44]. They involve
a two-step process where a backward denoising step is
trained to remove the noise previously added by a for-
ward diffusion step. DPMs model the data generation
process as a reverse diffusion process, where noise is
iteratively removed from a random initialization until a
sample from the target distribution emerges [44, 98].

DPMs can be classified into three categories: De-
noising Diffusion Probabilistic Models (DDPM), Score-
based Generative Models (SGM), and Stochastic Differ-
ential Equations (SDE). They differ in how they trans-
form noise into data records. DDPMs take a step-by-
step approach, gradually refining noise. SGMs use the
gradient of the data distribution to directly guide noise
towards the outcome. Meanwhile, SDEs treat this trans-
formation as a continuous process, modeling the addi-
tion and removal of noise through differential equations.

TDS diffusion tools, such as TabDDPM [62], SOS [56],
and STaSy [55], are able to preserve complex distribu-

tions and correlations, and are reported to outperform
simpler tools, such as TVAE [108] and TableGAN [83]
in terms of ML utility. However, they are computation-
ally more expensive than other deep generative alter-
natives [68]. TSGM [67] is an example for multivari-
ate time series generation using an SGM. It generates
records conditioned on past generated observations.

Transformers use an encoder-decoder architecture that
revolutionized the field of natural language processing
by replacing traditional RNNs and CNNs with attention
mechanisms [105]. This allows each element of a se-
quence to focus on any other elements of the same se-
quence, effectively capturing long-range dependencies.

Currently, there are a few transformer-based TDS
tools, with GReaT [5], REaLTabFormer [99], and Tab-
uLa [116] being notable examples. They all use a pre-
trained large language model (LLM) consisting of only
a decoder. GReaT uses the LLM GPT-2 and transforms
tabular datasets into textual representations before pro-
viding them to the LLM (fine-tuning and inference).
This step minimizes the required data pre-processing.
REaLTabFormer also uses GPT-2 and addresses the
generation of synthetic datasets with two tables being
in a one-to-many relationship (i.e., one parent and one
child table). They aim to reduce extensive fine-tuning,
especially for child tables. The authors of TabuLa em-
phasize that LLM-based TDS tools provide two main
advantages: elimination of the need to pre-define col-
umn types and elimination of the dimension explo-
sion problem when synthesizing high-dimensional data.
However, LLM-based tools have limitations on training
efficiency and preserving column correlations [116].

6.5 Probabilistic Database-based Models
Ge et al. [33] remark that most (deep) generation mod-
els fail to preserve integrity constraints of the input data
in the synthetic output data. To address this issue, they
developed a constraint-aware differentially private data
synthesis approach called KAMINO. KAMINO pre-
serves denial constraints specified by the user. Similar to
VAEs, it first uses the input dataset to learn a latent space
and then uses this space to sample the synthetic dataset.
The difference is that KAMINO represents this space
by a factorized probabilistic database [95] and takes
constraint violations into account when sampling the
synthetic values one after another. By learning weights
for the individual constraints, KAMINO also allows
the modeling of soft constraints, which do not strictly
have to be fulfilled. Experiments show that KAMINO
produces much fewer constraint violations than other
privacy-focused approaches, such as PrivBayes [112],
DP-VAEGM [15], and PATE-GAN [52]. However,
since KAMINO explicitly checks for constraint viola-
tions during sampling, it has longer execution times.
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Figure 2: Taxonomy of metrics for evaluating synthetic tabular data identified in our research.

6.6 Hybrid Models & Other Approaches
Some state-of-the-art TDS tools use combinations of
different TDS models. Examples of such hybrid tools
are AutoDiff [101] and TabSyn [111], which combine
VAEs with a diffusion model to improve the perfor-
mance of typical DDPMs for different column types
and distributions. They are also designed to reduce
runtime compared to typical diffusion tools.

Gilad et al. [34] proposed a method that uses already-
generated tables and connects them via foreign keys
while considering cardinality and integrity constraints.
In combination with an existing TDS approach, this al-
lows the generation of datasets with complex schemas.

7 Synthetic Data Evaluation Metrics
In contrast to other modalities of synthetic data, such as
text or images, the quality of tabular data cannot be eas-
ily assessed by human inspection, as its inherent prop-
erties (see Section 4), such as column distributions and
correlations, are not easily recognizable to humans. In
this section, we therefore provide an overview of evalu-
ation metrics typically used in TDS research to measure
the quality of synthetic tabular data.

Most of these metrics capture one certain characteris-
tic of the dataset, e.g., whether its correlations are iden-
tical to the correlations in the input dataset. However,
there is no universally accepted evaluation metric for
synthetic data among researchers. This makes compar-
ing the generative capabilities of the different tools dif-
ficult, as each work uses its own set of metrics [19].

First attempts, such as TabSynDex [19], aim to pro-
vide a universal metric by combining commonly used
metrics into a single metric score. However, we argue
that a combined metric is only useful if its individual
component metrics are appropriate for the purpose for
which the synthetic dataset was created (see Section 3).

Goncalves et al. [35] classify TDS evaluation metrics

into “data utility” and “information disclosure” metrics,
coherent to the Privacy vs. Data Utility trade-off dis-
cussed in Section 4. Based on this, we classify existing
evaluation metrics into further, more detailed, classes.
Data utility metrics capture the usefulness of the syn-
thetic dataset and how similar it is compared to its real
counterpart. In contrast, information disclosure encom-
passes all metrics that are related to the privacy aspect of
data synthesis. Goncalves et al. describe them as mea-
sures of ”(...) how much of the real data may be revealed
(directly or indirectly) by the synthetic data” [35, p. 6].

In our study, we have compiled a list of metrics used
in the publications of the 37 tools we have evaluated.
We additionally include metrics employed either in Tab-
SynDex [19], the Synthetic Data Vault [85], or Synth-
city [87, 104]. In Figure 2, we present a comprehensive
overview of evaluation metrics for synthetic tabular data
in the form of a taxonomy. In Table 2, we classify our
selected metrics according to this taxonomy and refer-
ence examples where they have been used. These ex-
amples can serve as a starting point on where to look
for a potential implementation. For beginners, it might
be beneficial to use libraries such as the sdmetrics [21]
from the Synthetic Data Vault [85] or Synthcity [104],
as they offer comprehensive functionalities.

In general, users should think carefully about the ap-
plication of the data to be synthesized and choose their
evaluation metrics accordingly. This is especially cru-
cial when handling sensitive data, where protecting pri-
vacy takes precedence over data utility. In addition, a
metric should always be selected to suit the purpose of
the TDS task at hand. For example, when rebalancing
the classes of a table, the goal is to change the distribu-
tion of some original columns. Thus, using a similarity-
based metric for these columns is contradictory.

The most popular metric is ML efficiency, which
refers to the application of ML models. For data man-
agement, other metrics may be more useful, such as the
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Table 2: Classification of evaluation metrics. The refer-
ences are examples where these metrics are used.

Class Evaluation Metric
Inference Attack Categorical Correct Attribute

Probability (CAP) [21],
Membership Attack [43, 83]

Anonymization K-Anonymization [104],
Measures L-Diversity [104], K-Map [104]
Distance Novel Row Synthesis [21],
Real vs. Synthetic Common (leaked) Rows Proportion [104],

Distance to closest Record (DCR) [43, 83]
Similarity Range & Outlier Coverage [21],

TV Complement [21],
Kolmogorow-Smirnow-Test [6, 53],
Chi-squared Test [6, 21],
KL Divergence [35],
Jensen-Shannon Distance [118],
Contingency Similarity [21]

Statistical Mean, Median, Mode,
Measures Variance, Min, Max, %-quantile
Correlation Pearson Coefficient [21, 62, 72],

Spearman’s Coefficient [4, 21]
Discrimination ML Real vs. Synthetic Discrimination [2, 104],
Measures pMSE-score [19, 97]
ML Efficiency ML Classification [21, 35, 62, 104, 108],

ML Regression [21, 62, 104, 108]
Dimensionality Principal Component Analysis (PCA) [66, 76],
Reduction T-distributed stochastic neighbor

embedding (T-SNE) [66, 76]
Relationship Cardinality Shape Similarity [21]
Cardinality
IC Violations g1-Error [33]

statistical similarity of query results, or the correctness
of optimized query plans and normalized schemas.

8 Study Results
In our study, we assessed the 37 TDS tools listed in Ta-
ble 3 on their suitability for the purposes described in
Section 3 and their reported performance on the func-
tional requirements listed in Table 1. We have selected
these tools based on their popularity, diversity, novelty,
and quality (in terms of utility measures such as ML effi-
ciency). The assessment resulted in the matrices shown
in Tables 4 and 5. Based on these results, we constructed
a tool selection guide helping inexperienced users to se-
lect a suitable TDS tool for their specific use case and
identified gaps in TDS research.

8.1 Tool Capability Assessment
The first step in our assessment was determining which
purposes were addressed by each TDS tool. For ex-
ample, we consider TDS tools suitable for privacy pro-
tection if they include privacy-preserving techniques in
their algorithms, as well as privacy evaluation metrics in
their experiments. A few tools (e.g., PrivBayes) sacri-
fice data utility completely in favor of privacy and hence
are not really suitable for any other purpose. However,
most tools are able to perform missing value imputation,

Table 3: The 37 TDS tools used in our assessment.

Model TDS Tool
Sampling SMOTE [14], Borderline-SMOTE [40],

SVM-SMOTE [96], Kmeans-SMOTE [24],
Enhanced SMOTE [39], ADASYN [42]

Bayesian Network PrivBayes [112]
MRF PrivLava [13], PrivMRF [12]
GAN medGAN [17], PATE-GAN [52],

DTGAN [64], DP-GAN [107], TableGAN [83],
TGAN [109], CTGAN [108], C3TGAN [41]
CTAB-GAN [118], CTAB-GAN+ [117],
GANBLR [114], GANBLR++ [115],
TimeGAN [110], DoppelGANger [69]

VAE TVAE [108], TimeVAE [22], DP-VAEGM [15]
Diffusion TabDDPM [62], TSGM [67],
(DPM) SOS [56], STaSy [55]
Graph NN GOGGLE [71]
Transformer GReaT [5], REalTabFormer [99], TabuLa [116]
Prob. Database KAMINO [33]
Hybrid AutoDiff [101], TabSyn [111]

class rebalancing, and data augmentation. The differ-
ence between these tools lies in whether they are suit-
able to protect privacy (either simple1 or differential pri-
vacy [26]), whether they allow customized generation,
and which potential user requirements they meet.

Therefore, in the second step we assessed the TDS
tools’ reported performance on functional requirements.
All TDS tools included in our study are able to synthe-
size multiple dependent columns. Furthermore, we
marked the column types which are reported to be ef-
fectively handled by the tools, based on the datasets
used in their experiments. Some tools only included
datasets with either categorical or numerical columns.
However, the most complete tools are also able to work
with temporal, text, and mixed column types. In ad-
dition, we marked whether the tools are reported to
perform well with complex distributions or whether
they assume columns to be Gaussian distributed. As
some of the oldest tools focus on privacy protection and
do not aim to preserve column correlations, we also
marked whether or not the tools preserve such correla-
tions. Similarly, for tools specially designed to handle
time series datasets, we marked whether they address
short-term and/or long-term dependencies.

Finally, we assessed whether the TDS tools address
challenges outside the ML community, such as integrity
constraints and inter-table correlations. For inter-table
correlations, we checked whether the tools address two
(e.g., a parent-child relationship) or more tables.

During our assessment, we observed a lack of in-
formation published with respect to the non-functional
1We consider a privacy-preserving technique to be simple if
it cannot provide a concrete privacy guarantee, as in the case
of differential privacy, but it ensures that the generated records
do not exactly resemble the original records, which is usually
evaluated by measuring their distance (see DCR in Table 2).
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Table 4: Assessment of the 37 TDS tools included in this study on their suitability for the different purposes.

Privacy Missing Value Class Dataset Customized
Tools Simple Differential Imputation Rebalancing Augmentation Generation
Enhanced SMOTE* ⇥ ⇥ ⇥
ADASYN ⇥
PrivBayes ⇥
PrivMRF ⇥ ⇥ ⇥ ⇥
PrivLava ⇥ ⇥ ⇥ ⇥ ⇥
medGAN ⇥
PATE-GAN ⇥
DP-GAN ⇥
TableGAN ⇥ ⇥ ⇥ ⇥
TGAN ⇥ ⇥ ⇥ ⇥
DTGAN ⇥ ⇥ ⇥ ⇥
CTGAN ⇥ ⇥ ⇥ ⇥ ⇥
C3TGAN ⇥ ⇥ ⇥ ⇥
CTAB-GAN ⇥ ⇥ ⇥ ⇥ ⇥
CTAB-GAN+ ⇥ ⇥ ⇥ ⇥ ⇥
GANBLR ⇥ ⇥ ⇥ ⇥
GANBLR++ ⇥ ⇥ ⇥ ⇥
TimeGAN ⇥ ⇥ ⇥
DoppelGANger ⇥ ⇥ ⇥ ⇥
TVAE ⇥ ⇥ ⇥
TimeVAE ⇥ ⇥ ⇥
DP-VAEGM ⇥ ⇥ ⇥ ⇥
TabDDPM ⇥ ⇥ ⇥ ⇥ ⇥
TSGM ⇥ ⇥ ⇥
SOS ⇥ ⇥ ⇥
STaSy ⇥ ⇥ ⇥
GOGGLE ⇥ ⇥ ⇥
GReaT ⇥ ⇥ ⇥ ⇥
REaLTabFormer ⇥ ⇥ ⇥ ⇥ ⇥
TabuLa ⇥ ⇥ ⇥ ⇥
KAMINO ⇥ ⇥ ⇥ ⇥
AutoDiff ⇥ ⇥ ⇥ ⇥ ⇥
TabSyn ⇥ ⇥ ⇥ ⇥ ⇥
*Enhanced SMOTE serves as a representative of all SMOTE variations

Table 5: Assessment of the 37 TDS tools on their reported performance on the functional requirements.

Column Types Complex
Distributions

Correlations Temporal Integrity Constraints

Tools Categorical Num.
Continuous

Num.
Discrete Temporal Text Mixed

Cat./Num.
Intra-
table

Inter-
table Short Long Intra-

record
Inter-
record

Enhanced SMOTE* ⇥ ⇥ ⇥
ADASYN ⇥
PrivBayes ⇥ ⇥
PrivMRF ⇥ ⇥ ⇥ ⇥
PrivLava ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
medGAN ⇥ ⇥ ⇥ ⇥
PATE-GAN ⇥ ⇥ ⇥
DP-GAN ⇥ ⇥ ⇥
TableGAN ⇥ ⇥ ⇥ ⇥
TGAN ⇥ ⇥ ⇥ ⇥
DTGAN ⇥ ⇥ ⇥ ⇥
CTGAN ⇥ ⇥ ⇥ ⇥ ⇥
C3TGAN ⇥ ⇥ ⇥ ⇥ ⇥
CTAB-GAN ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
CTAB-GAN+ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
GANBLR ⇥ ⇥ ⇥
GANBLR+ ⇥ ⇥ ⇥ ⇥ ⇥
TimeGAN ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
DoppelGANger ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
TVAE ⇥ ⇥ ⇥ ⇥ ⇥
TimeVAE ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
DP-VAE-GM ⇥ ⇥ ⇥ ⇥
TabDDPM ⇥ ⇥ ⇥ ⇥ ⇥
TSGM ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
SOS ⇥ ⇥ ⇥ ⇥ ⇥
STaSy ⇥ ⇥ ⇥ ⇥ ⇥
GOGGLE ⇥ ⇥ ⇥ ⇥ ⇥
GReaT ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
REaLTabFormer ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
TabuLa ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
KAMINO ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
AutoDiff ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
TabSyn ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
*Enhanced SMOTE serves as a representative of all SMOTE variations
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Figure 3: Tool selection guide resulting from the assessment of 37 TDS tools, based on their reported performance on
the functional requirements identified in Section 5.
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requirements, such as the level of customization, pre-
processing, and hardware required, as well as the re-
source efficiency and scalability of the tools.

8.2 TDS Tool Selection Guide
Based on the assessments results, we consolidated all
factors into a tool selection guide, which is shown in
Figure 3 in the form of a decision tree. As the complete
guide with all 37 tools and all selection factors was too
large for a printed presentation, we removed the simplest
branches from this tree. These include: (i) TDS tools
that can only be used to address the purposes of missing
value imputation, class rebalancing, or data augmenta-
tion, (ii) TDS tools that can handle only categorical or
numerical columns, (iii) TDS tools that do not effec-
tively preserve column correlations, and (iv) TDS tools
that assume all column distributions to be Gaussian.

The selection guide comprises five node levels and
ends with leaf nodes that either are a suitable TDS tool
for the use case or a ”Gap-Leaf” that represents a re-
search gap. The questions of the individual branches are
meant to show users the differences between the TDS
tools. Given the limited amount of information available
on the tools’ resource efficiency, the guide suggests tools
that cover the functional requirements of the respective
branch and avoids recommending overly complex tools.

The selection guide allows users to assess the suit-
ability of a TDS tool for their use case by answering
questions about their own dataset and intended purpose.
Since it requires no expertise about the tools’ underlying
models (e.g., GAN or MRF), this approach is much eas-
ier to use than navigating the selection process based on
the differences between those models. If the selection
process ends up with a ”Gap-Leaf”, the users can still
identify the nearest possible tool and its limitations. For
example, if their dataset includes categorical, numerical,
temporal, and text columns, and the preservation of in-
tegrity constraints is necessary, the users will find that
there are no suitable TDS tools to date. However, they
can see that (i) REaLTabFormer [99] works for all those
column types, but does not preserve integrity constraints
and (ii) KAMINO [33] preserves integrity constraints,
but does not support temporal and text columns.

8.3 TDS Research Gaps
Our tool selection guide reveals two primary research
gaps, both of which are particularly relevant to the data
management community. The first is the synthesis of
datasets with complex relational schemas consisting of
multiple tables linked by foreign keys. The second is the
preservation of integrity constraints.

PrivLava [13] is a first promising approach to syn-
thesizing datasets with complex schemas. Its biggest
disadvantage is that it is restricted to non-cyclic refer-

ence graphs. Since such cycles are not uncommon in
large schemas, especially self-references (e.g., one per-
son refers to another), this is a significant limitation.

KAMINO [33] and C3TGAN [41] provide initial so-
lutions for preserving integrity constraints when synthe-
sizing single tables. While KAMINO is able to preserve
denial constraints (including UCCs and FDs), C3TGAN
achieves the same for simple constraints that are lim-
ited to the values of individual records (e.g., age > ex-
perience). Constraints that are not covered by either
approach are, for example, arithmetic constraints (e.g.,
gross = net + tax) and cardinality restrictions (e.g., a
person is only allowed to make a maximum of five debits
per day). Finally, there is currently no tool that supports
both complex schemas and integrity constraints.

In addition to these gaps, there is a need for evaluation
metrics related to data management tasks (analogous to
ML efficiency) and benchmarking frameworks that help
users to identify the tools most useful for their use case.

9 Conclusion
Data scarcity and data privacy have become fundamen-
tal problems for data-driven models across application
domains [11]. While data synthesis tools are already
used to mitigate these issues, choosing the right tool for
a given use case has become increasingly complex.

In this paper, we provided an overview of the chal-
lenges and solutions that currently exist in the field of
tabular data synthesis (TDS). To enable a systematic
tool selection, we first identified functional and non-
functional requirements of potential use cases and then
evaluated 37 TDS tools with regard to these require-
ments. Based on the two resulting assessment matrices,
we developed a decision guide that supports users in
selecting the right tool for their specific use case and
identified open challenges in current TDS research.

One key finding is that TDS research has so far fo-
cused on the ML community and that important data
management requirements have not received enough at-
tention. This applies in particular to the generation of
datasets with complex schemas and the preservation of
integrity constraints.

In our future work, we plan to develop a benchmark-
ing framework that enables automatic evaluation of a
tool’s fitness for use for different real-world use cases.
In this way, users can be guided by experimental results
rather than reported performance numbers.
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