Most of the Time it Works Every Time

The Mindset Behind Using Probabilistic Data Structures

BS2000 & DB/DC 2024, Munich, Germany
Wolfram "Wolle" Wingerath
November 27, 2024

Slides Available at https://wolle.science

Research Overview: Data Engineering for Data Science

Mini Lecture Outline

Skip Lists: Challenge & Basic Idea

Which problem do skip lists solve and in what ways are they superior to other list variants?

Chance, Efficiency & Complexity Analysis

What is the probabilistic element in skip lists, how do they scale, and when should you use them?

Trade-Offs in Other Probabilistic Data Structures

What are advantages of other probabilistic data structures like Bloom filters or Count-Min Sketches?

Helpful Basic Knowledge

Data Structures

Linked Lists, Arrays & Array Lists, Self-Balancing Trees, Hash Maps

Algorithms & Performance Analysis

Binary Search, Tree Traversal, Sorting,
Probability Theory basics

Sorted List Applications

Database Sorting & Indexes, Dynamic Collections, (Streaming) Aggregation

Probabilistic Data Structures

Skip Lists & Coin Flipping, Bloom Filters,
Count-Min Sketch, Trade-Offs & Use Cases

Application Scenario: Working With a Sorted List

- Imagine sorted list of key-value pairs, e.g. ...
 - a sorted set in Redis
 - Member list on your Discord server
 - a list of running medians over a large sliding window

Raymond Hettinger. <u>Regaining Lost Knowledge</u>, Deep Thoughts by Raymond Hettinger (2010).

Matt Nowack. <u>Using Rust to Scale Elixir for 11</u> <u>Million Concurrent Users</u>, Discord Blog (2019).

Challenge: Maintaining Order

Why not just use standard list implementations?

Sorted Linked List:

 \circ Search: O(n)

 \circ Update: O(1) (after search)

VS.

Sorted Array List:

 \circ Search: $O(\log n)$

 \circ Update: O(n)

+ Binary Search

Can't we have a list that gives us both?

(Yes! Yes, we can!)

+ Fast updates

Skip List Idea: A Sorted Linked List Tuned For Binary Search

The perfect skip list is a sorted linked list with shortcuts for skipping item subsequences during traversal

- Normal Lane (level 1): standard sorted linked list where every node is connected to its successor
- Express Lanes (levels above): Only half of all nodes are promoted to the next level
 - Level 2: add pointers that connect only every 2nd node
 - Level 3: add pointers that connect only every 4th node
 - O ...
 - \circ Level $log\ n$: only 1 node that connects to HEAD and TAIL

Searching the Perfect Skip List

- Basic search algorithm:
 - (1) Start with the fastest express lane (top level)
 - (2) Keep advancing until the next step would overshoot, then climb down one level
 - (3) Repeat until you either find the target or reach the normal lane and find that it's not in the list

Searching the Perfect Skip List

- Basic search algorithm:
 - (1) Start with the fastest express lane (top level)
 - (2) Keep advancing until the next step would overshoot, then climb down one level
 - (3) Repeat until you either find the target or reach the normal lane and find that it's not in the list

 Success!

 * Failure!
- O(log n) Time Complexity: Search paths no longer than 2 log n nodes
 - \circ There are $log\ n$ levels
 - Search will visit no more than 2 nodes per level!

search 19

The Perfect Skip List: Space Efficiency

geometric series

O(n) Space Complexity: The list has no more than 2n pointers

- The number of nodes across all levels can be used as an upper bound:
 - o *n* nodes on level 1 (all nodes)
 - $\circ \frac{n}{2}$ nodes on level 2 (every 2nd node)
 - $\circ \frac{n}{4}$ nodes on level 3 (every 4th node)
 - 0 ...
 - o Entire list: $n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots = n + n \cdot \sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^k = n + n = \underline{2n}$

The Perfect Skip List: But What About Updates?

- Value updates are always efficient (search + replace node value)
- Insert and delete operations can be efficient!
 - Example: Inserting 27
 - → Structure remains intact with only minor changes (and removing it would be easy as well)

The Perfect Skip List: But What About Updates?

- Value updates are always efficient (search + node value change)
- Insert and delete operations can be efficient!
 - Example: Inserting 27
 - → Structure remains intact with only minor changes (and removing it would be easy as well)
- But they can also require (prohibitively) expensive restructuring to keep the perfect structure!
 - Example: Inserting 20
 - → Keeping the structure intact is not possible without rearranging many nodes

Probabilistic Structure for Increased Robustness

- Problem: efficient updates are not possible while maintaining the perfect skip list structure
- Approach: Requirement relaxation!
 - → Exactly half of all nodes are promoted to the next level

Perfect Skip List (strict requirements)

Probabilistic Structure for Increased Robustness

- Problem: efficient updates are not possible while maintaining the perfect skip lis structure
- Approach: Requirement relaxation!
 On average
 - On average,

 Exactly half of all nodes are promoted to the next level
 - → Expected performance remains the same as with perfect skip lists!
- Coin Flipping: When inserting a new node, we flip a coin for every promotion decision:
 - Meads: The node gets promoted to the next level and we flip again ...
 - (\$) Tails: No further promotion!

Perfect Skip List

Deleting From a Skip List

- Basic **delete algorithm** for removing a node X (e.g. 17):
 - (1) Perform search for the to-be-deleted node X until you find the node on the normal lane
 - (2) On your way down, remember X's predecessor on every level $\rightarrow predecessors = \begin{pmatrix} 9 \\ 6 \\ 6 \end{pmatrix}$ level 2 level 3
 - (3) ...

level 1

Deleting From a Skip List

- Basic **delete algorithm** for removing a node X (e.g. 17):
 - (1) Perform search for the to-be-deleted node X until you find the node on the normal lane
 - (2) On your way down, remember X's predecessor on every level \rightarrow predecessors = $\begin{pmatrix} 9 \\ 6 \\ 6 \end{pmatrix}$ level 2 level 4
 - (3) Connect X's predecessors with X's successors and remove X

delete 17 | Separate | Parameter | Parame

level 1

Inserting Into a Skip List

- Basic insert algorithm for adding a node X (e.g. 17) is very similar to the deletion algorithm:
 - (1) Perform search for the to-be-inserted node X until you find the position on the normal lane
 - (2) On your way down, remember X's predecessor on every level \rightarrow predecessors = ... (as before)
 - (3) Coin flips to choose a level between 1 and max. level \rightarrow level 2 \rightarrow level 2 \rightarrow level 3 \rightarrow level 3 \rightarrow level 3
 - (4) Insert the node ...

insert 17

Inserting Into a Skip List

- Basic insert algorithm for adding a node X (e.g. 17) is very similar to the deletion algorithm:
 - (1) Perform search for the to-be-inserted node X until you find the position on the normal lane
 - (2) On your way down, remember X's predecessor on every level \rightarrow predecessors = ... (as before)
 - (3) Coin flips to choose a level between 1 and max. level \rightarrow level 1 \rightarrow level 2 \rightarrow level 3 \rightarrow level 3 \rightarrow level 3
 - (4) Insert the node and update pointers on chosen levels

insert 17

About Fair & Unfair Coins: Choosing the Optimal p-Value

р	Time Complexity (Normalized $\frac{\log_{1/p} n}{p}$)	Example $(rac{\log_{1/p}n}{p} ext{ for }n=128)$	Space Complexity $(\frac{1}{1-p'}, \text{ i.e. Avg. Pointers Per Node})$
$\frac{1}{2} = 0.5$	1	$\frac{\log_2 128}{1/2} = 7 \cdot 2 = 14$	2
$\frac{1}{e} \approx 0.368$	0.942	$\frac{\log_e 128}{1/e} \approx 4.852 \cdot e \approx 13.189$	1.582
$\frac{1}{4} = 0.25$	1	$\frac{\log_4 128}{1/4} = 3.5 \cdot 4 = 14$	1.333
$\frac{1}{8} = 0.125$	1.333	$\frac{\log_8 128}{1/8} \approx 2.333 \cdot 8 \approx 18.666$	1.143
$\frac{1}{16} = 0.0625$	2	$\frac{\log_{16} 128}{1/16} = 1.75 \cdot 16 = 28$	1.067

So decreasing the p-value (promotion probability) ...

- ... means better storage efficiency (i.e. fewer levels and thus fewer pointers) ...
- ... but also generally slower searches (i.e. more steps on avg. search path)!

Probabilistic Analysis: How Likely is a Slow Search?

But $O(\log n)$ with high probability (w.h.p.) does not give you any strict upper bound, so ...

- ... with some probability, search might still be slow!
- ... in the worst case, a skip list can degrade to a linked list with $log\ n$ times the normal pointers!
- → Search taking much longer than expected is **extremely** rare for lists large enough for it to matter!

The Skip List: A Probabilistic Alternative to Balanced Trees?

"From a theoretical point of view, there is no need for skip lists.

Balanced trees can do everything that can be done with skip lists and have good worst-case time bounds (unlike skip lists)."

— William Pugh (1990)

Both provide $O(\log n)$ time and O(n) space complexity, so why should you choose one over the other?

→ Skip Lists

- \circ Easy to Build: Simple operations without need for rebalance \rightarrow typically easier to implement
- \circ Robustness: performance is unaffected by the order of insertions \rightarrow no "bad" input sequences

→ Balanced Trees

- \circ *Predictability*: Strict worst-case guarantees \rightarrow no unexpected execution time spikes
- \circ Efficiency: Constants are often favorable, e.g. high branching factor \rightarrow shallower structure

Topics for Upcoming Lectures

Advanced Skip List Variations

Optimizations, Layering Strategies, Complexity Analysis

Applications & Benchmarking

Implementation & Performance Shoot-Out,
In-Memory vs. Persistent Storage, Tuning

Other Probabilistic Data Structures

Bloom Filters, Count-Min Sketch, HyperLogLog, Trade-Offs & Optimization Goals

Topics for Upcoming Lectures

Advanced Skip List Variations

Optimizations, Layering Strategies,
Complexity Analysis

Applications & Benchmarking

Implementation & Performance Shoot-Out,
In-Memory vs. Persistent Storage, Tuning

Other Probabilistic Data Structures

Bloom Filters, Count-Min Sketch, HyperLogLog, Trade-Offs & Optimization Goals

Bloom Filter Challenge: Checking for Membership

- **Problem**: Checking the DB for username availability on every registration is expensive!
- Optimization: Only ask DB on positive Bloom Filter check!
 - Trade-off: memory efficiency vs. false-positive rate
 - Tuning parameters: number of bits & number of hash functions
- Hash collisions only produce false positives, but never false negatives!

Bloom Filter Challenge: Checking for Membership

Trade-off: memory efficiency vs. false-positive rate

F. Gessert, M. Schaarschmidt, W. Wingerath, S. Friedrich, N. Ritter: <u>The Cache Sketch:</u>
Revisiting Expiration-based Caching in the Age of Cloud Data Management, BTW 2025

bits & number of hash functions

W. Wingerath, F. Gessert, E. Witt, H. Kuhlmann, F. Bücklers, B. Wollmer, N. Ritter. Speed Kit: A Polyglot & GDPR-Compliant Approach For Caching Personalized Content, ICDE 2020

ositives, but never false negatives!

Niema Moshiri: Advanced Data Structures: Bloom Filters, YouTube (2020).

Count-Min Sketch Challenge: Estimating Item Frequencies

- **Problem**: The space for keeping one message counter per user grows linearly with your user base!
- Optimization: Count items per hash instead of items per user!
 - Trade-off: memory efficiency vs. overcounting error
 - Tuning parameters: number of counters & number of hash functions
- Counts are upper bounds, since hash collisions only lead to overcounting!

Summing up: Probabilistic Data Structures Are Awesome!

- Skip Lists combine elements from sorted linked lists and array lists to achieve
 - Simplicity: straightforward implementation, extension & modification
 - \circ Efficiency: $O(\log n)$ Time Complexity for inserts, deletes & search with high probability
 - Robustness: no "bad" sequences, no rebalancing, no sophisticated tuning required!
- Probabilistic Data Structures in general are used across a variety of Applications including
 - Order-Preserving Dynamic Collections (Skip Lists)
 - Efficient Membership Tests Without False Negatives (Bloom Filters)
 - Estimating Upper Bounds for Item Counts (Count-Min Sketch)
 - Many More, e.g. Counting Unique Visitors (HyperLogLog)

Thanks! Questions?

