
Using the Client Cache for Content Encoding:
Shared Dictionary Compression for the Web

Benjamin Wollmer1,3[0000−0002−0545−8040], Wolfram
Wingerath2[0000−0003−3512−5789], Felix Gessert3[0000−0003−4991−9432],

Florian Bücklers3, Hannes Kuhlmann3, Erik Witt3, Fabian Panse1, and
Norbert Ritter1

1 University of Hamburg, Germany, dbis-research@informatik.uni-hamburg.de
2 University of Oldenburg, Germany, data-science@uni-oldenburg.de

3 Baqend GmbH, Hamburg, Germany, research@baqend.com

Abstract. As different approaches have demonstrated in the past, delta
encoding and shared dictionary compression can significantly reduce the
payload of websites. However, choosing a good dictionary or delta source
is still a challenge and has kept delta encoding from becoming practi-
cally relevant for today’s web. In this work, we demonstrate that the often
prohibitive costs of dictionary generation exhibited by earlier approaches
can be avoided by simply using cache entries for content encoding: We
divide web pages into different page types and use one actual page of
every type as a dictionary to encode pages of the same type. In an ex-
perimental evaluation, we show that our approach outperforms current
industry standards by a factor of 5 in terms of compression ratio. We
discuss optimization and content normalization strategies as well as ap-
plication scenarios that are possible with our approach, but infeasible
with the current state of the art.

Keywords: Delta Encoding · Web · Shared Dictionary Compression.

1 Introduction

Delta encoding is a compression method that reduces the size of a file by only
describing it as a delta (i.e., relative change) with respect to another file using
a dictionary that contains shared content. Our previous work shows how much
data can be saved when compressing web pages by finding the optimal dictio-
nary in the client cache and using it to calculate the delta dynamically [12,13].
However, using the smallest delta for every individual user and file is not feasible
in practice because of huge computational costs and a reduced cache hit rate on
the CDN level4. Furthermore, client and server communication would suffer by
negotiating what the client cache offers. Current approaches therefore use syn-
thetic dictionaries that are created apriori and have to be made known to client
4 Content delivery networks (CDNs) accelerate content delivery by caching resources

that are requested by multiple clients [6]. This is obviously not possible for deltas,
if they are computed for individual users.

mailto:dbis-research@informatik.uni-hamburg.de?cc=benjamin.wollmer@uni-hamburg.de,fabian.panse@uni-hamburg.de,norbert.ritter@uni-hamburg.de
mailto:data-science@uni-oldenburg.de?cc=wolfram.wingerath@uni-oldenburg.de
mailto:research@baqend.com?cc=ww@baqend.com,bw@baqend.com,fg@baqend.com


2 Wollmer et al.

and server in advance; for example, Brotli [1] compression uses a shared dictio-
nary that is part of every major browser distribution and contains generic tokens
from web content. Approaches to use custom dictionaries for individual websites
have been implemented [2,4], but ultimately failed because of the high complex-
ity and computational costs of regenerating and redistributing new dictionaries
after website deployments [7].

In this work, we show how the process of choosing dictionaries can be sim-
plified to a degree that allows it to happen at transmission time, while still
maintaining a compression ratio comparable to today’s static approaches. In-
stead of creating a synthetic dictionary or finding the smallest delta possible, we
map every web page (i.e., file) to exactly one similar existing page as a dictionary.
Dictionaries in our approach are thus predefined and therefore require neither
costly computation nor negotiation when requesting new content. This opens up
various possibilities for improving infrastructure efficiency and user-perceived
performance in the web.

We make the following contributions:

C1 Simplification of Dictionary Selection.
After discussing related work in Section 2, we show how the selection of a
dictionary can be simplified by simply choosing a random page from a set
of the same page type.

C2 Evaluation with Real-World Data.
While shared dictionary compression is not available in any browser yet,
we use real-world data of Speed Kit’s caching architecture in Section 3 to
calculate the expected impact of our approach on the compression ratio.

C3 Practical Considerations & Open Challenges.
In Section 4, we discuss how the complexity of shared dictionary compres-
sion can be encapsulated in a CDN-like infrastructure to make our approach
available as a plugin to existing websites. We also present lines of future
research to enable instant page load times through extensions of our work,
such as predictive preloading of web content or normalization of the dictio-
nary files to effectively turn them into generic templates (akin to app shells
known from progressive web apps).

2 Related Work

Delta Encoding describes a file as a sequence of copy and delete instructions
to build it from another file. While no implementation is used in major web
browsers today, there have been efforts to include delta encoding in the HTTP
standard by Mogul et al. [5]. While they showed that calculating the delta from
an old version to a new one can significantly reduce the payload, they did not
consider deltas between different files or a shared dictionary. VCDIFF, one of
the most prominent differentiation algorithms, was proposed by Korn et al., as
well as the name for the format of said algorithm [3]. There exists an open-source
implementation by Google5.
5 https://github.com/google/open-vcdiff

https://github.com/google/open-vcdiff


Using the Client Cache for Content Encoding: SDC for the Web 3

Shared Dictionary Compression algorithms use a dictionary for multiple
files instead of a dedicated dictionary for each file. Zsdt [2] or FemtoZip6 can
be used with a shared dictionary, but they have yet to be used for web con-
tent. Currently, the only exception in the context of the web is Brotli. Despite
the other approaches, Brotli uses a static dictionary known to the encoder and
decoder [1]. As a result, the dictionary does not need to be transferred. While
Brotli is currently the only supported shared dictionary algorithm for all major
browsers, its custom dictionary capabilities are currently unavailable in all major
implementations. However, there are attempts to bring shared dictionary com-
pression with Brotli to the major web browsers [9]. All of the above mentioned
shared dictionary compressors are able to train a custom dictionary from a set
of given files. Shared Dictionary Compression over HTTP (SDCH) was devel-
oped by Google [4]. The basic idea was to push dictionaries to the browser so
that the browser could use those to calculate the delta with VCDIFF to newly
requested files. While this feature was available in Chrome, it did not get well
adapted by the community: There are reports from LinkedIn claiming they could
reduce their payload by up to 81% for certain files [7], but they also stated that
the dictionary calculation took longer than their release cycles. Due to the low
adoption, SDCH was eventually unshipped [8].

Speed Kit is an architecture developed by Baqend that enables caching
dynamic content (e.g., HTML files) and various other performance optimizations
for websites [10] as well as an extensive real-user monitoring (RUM), processing
more than 650 million page loads every month [11]. We use Speed Kit’s RUM
data for our evaluation and discuss opportunities for implementing our approach
in the Speed Kit architecture in Section 4.

3 Selecting Raw Files as Dictionaries

Training a dictionary for shared dictionary compression usually involves an algo-
rithm that analyzes hundreds of files to be compressed with the dictionary to be
trained. The main goal is to find common strings (or byte arrays) across different
files and to extract them into the dictionary. Web pages are especially well-suited
for this kind of compression as they typically share many common strings like
div tags or CSS selectors. Also, websites often contain repeating elements which
are present on almost every page, such as the navigation header, the logo, search
components, or the footer. Pages on a website can further often be categorized
by their page type that subsumes a set of pages with the same purpose. Web
analytics tools like Google Analytics7 routinely distinguish pages by their type,
so that our approach can use the page type information without any overhead
as it is readily available in virtually any production environment. For example,
e-commerce websites typically define at least the product and listing page types.
While a page of type product describes a product on the website, a page of type

6 https://github.com/gtoubassi/femtozip
7 https://analytics.google.com/analytics/web/provision

https://github.com/gtoubassi/femtozip
https://analytics.google.com/analytics/web/provision


4 Wollmer et al.

listing aggregates products of the same category. These pages are often gener-
ated with templates on the server side, like handlebars8 or twig9, and therefore
share a lot of markup code by design. Transferring these repeating parts with
every request is still the standard for server-side rendering. We argue that these
similarities are sufficient to use pages of the same page type as a dictionary.

3.1 Evaluation

As of today, no major browser distribution supports shared dictionary algorithms
with custom dictionaries. Therefore, we evaluated the expected benefits of this
approach by compressing real-world HTML files and leave tests using browser
implementations as a task for future work, to be conducted after release of
the required browser features. We used Brotli as the compressor, since there
are efforts to make Brotli’s custom dictionaries available within web browsers
(cf. Section 2). As we also have shown in our previous papers [12,13], Brotli can
achieve the highest compression ratio for shared dictionary compression and also
excels in decompression speed [1]. We measured our approach’s compression and
decompression time with Brotli on levels 6 and 11. Level 6 is essential since it is
the default level used for dynamic content. Level 11 can be used for static content,
which usually results in better compression ratios but a worse compression time.
The hardware we used in this experiment consists of a Ryzen 5950x, 64 GB 3600
MHz RAM and a PCI 4.0 SSD to measure the timings.

The dataset is provided by Speed Kit and contains HTML files of the most
requested files of the last three days for six different websites. These are all e-
commerce platforms. We used the two most common page types for this work:
listing and product. We fetched a total of 1420 samples of the most requested
HTML pages, evenly distributed across all pages and pages types. For each page
type and website combination, we used every page as a dictionary for all other
pages of the same page type10.

Size. Figure 1 shows how the data saving is distributed across the different
page types. We chose compression level 11 to show the best possible output, and
as shown, we could reduce the payload by 88% of Brotli compression with the
standard dictionary – the mean size of those deltas where in the range of 9 kB. As
a comparison, the maximum TCP package size is 64 kB11. The relative results
for Brotli on level 6 look similar and are left out because of space restrictions.

The compression ratio was relatively stable within each website. Figure 2
shows the compression ratio for each website. The first four websites where able
to save more than 90% of the data, compared to Brotli’s default dictionary.
8 https://handlebarsjs.com/
9 https://twig.symfony.com/

10 Resulting in more than 288000 deltas.
11 The files are small enough to fit into the initial congestion window, which might

increase the performance.

https://handlebarsjs.com/
https://twig.symfony.com/


Using the Client Cache for Content Encoding: SDC for the Web 5

40 50 60 70 80 90 100
Saving %

listing

product
P

ag
e 

Ty
pe

Fig. 1: Comparing the page-type dictionary to Brotli’s default dictionary shows
that our approach can save around 88% of transferred data.

1 2 3 4 5 6
Website

40

50

60

70

80

90

100

S
av

in
g 

%

Fig. 2: Generally, all analyzed websites benefit from the page-type dictionary;
some pages can save up to 93% of the size achieved by Brotli’s default.

Website 3 performed exceptionally well, with a median saving of 93% of Brotli
size with its standard dictionary. Furthermore, while websites 5 and 6 did not
perform as well as the first four, they were still far ahead of the standard Brotli
compression. There was also no case where the dictionary approach suffered
from a worse compression ratio than the standard Brotli compression and is a
considerably safe alternative.

Performance. As Figure 3a indicates, the custom dictionary also resulted in a
slightly faster compression time for most pages. This was less significant for the
default compression level 6, but on level 11, there were time savings for up to a
second. As Figure 3b shows, the decompression time was generally stable through
different compression levels. But since the smaller dictionaries resulted in fewer
instructions, there was also a slight but negligible improvement (< 3 ms).



6 Wollmer et al.

1000 100 10 1 0 1 10 100
Compression Time Difference (ms)

11

6
Le

ve
l

(a) The high compression level benefits the most of the custom dictionary and, in most
cases, saves hundreds of milliseconds.

2.5 2.0 1.5 1.0 0.5 0.0
Decompression Time Difference (ms)

11

6

Le
ve

l

(b) Decompressing is generally fast, and the provided uplift is neglectable.

Fig. 3: Comparing the absolute difference using the custom dictionary to the
standard Brotli dictionary shows that the custom dictionary, almost in all cases,
outperforms the standard general purpose dictionary.

4 Practical Considerations

Using page-type dictionaries is feasible in practice. However, there are still some
practical considerations.

4.1 Downloading the Dictionary

As with every shared dictionary approach, this approach only works with a
given dictionary. Therefore, we cannot optimize the first-page load. But when
should we download the dictionary? A naïve approach would be to split the first
load of a journey12 into the dictionary and the diff and then download them
simultaneously. This approach has two critical problems: First, we introduce a
dependency within the critical rendering path. Normally, the browser can read
the HTML as a stream and start its work after receiving the first chunks, e.g.,
to resolve dependencies. While the decompression is streamable, it can only be
started if the dictionary is available. The dictionary itself is likely to be bigger
than the actual compressed file. As a result, the compressed file has to wait for the
dictionary, and we are essentially disabling the streaming process and therefore
12 A journey describes multiple consecutive page visits of one user.



Using the Client Cache for Content Encoding: SDC for the Web 7

slowing down the rendering process. Second, our data showed that doing so
increases the total transferred data. This is unsurprising since we transfer all
data needed and the decompression operations.

Intuitively, one could also lazy load the dictionary while the browser is idle.
While this would not affect our performance, we still only shift the size problem.
Because now, the second page load is in total increased and only pays off after
loading a third web page. The solutions to this gamble are limited. One solution
would be to download the dictionary as a delta from the first page load while
idling. In total, this would already payoff with the second page load, without
affecting the performance of the first page load. The drawback is that the server
cannot precompute this delta since the users can use every page as an entry to
the website (e.g., through a google search or a link). This may not be a problem
since the calculation is usually in the range of milliseconds and is not time
critical because we are preloading this request. However, this approach will only
work for static content. Because personalized content usually gets dynamically
generated and will not be cached by the server. Caching it on the server side
to compute the dictionary delta later will result in some kind of sticky sessions,
which are unfavorable in a distributed system due to scalability reasons. So far,
we have only talked about new users to a website. This problem does not exist
for returning users. They can fully benefit from the first page load of a session
and, as described in Section 3, are likely to shrink the whole amount of HTML
bytes to the size of one HTML file. Of course, longer sessions benefit even more
from this approach.

4.2 Creating Template Dictionaries

Since server rendered pages are built on templates (cf. Section 3), one could also
use this property by simply rendering an "empty" page and using it as the dictio-
nary for this page type. A product page could be rendered without any product
information. This template should still be a valid HTML file to be renderable.
The dictionary can then act as a proxy once a page of this type is requested. Like
single-page applications, the browser can render this proxy template while the
actual delta is requested. Dynamically replacing the rendered template has some
caveats, like double javascript execution, and may need adjustment, as described
in [10], but could improve user-perceived performance. And while there are algo-
rithms to find common strings in a set of files (cf. Section 2: femtozip, zstd), to
the best of our knowledge, there is currently no algorithm available to extract a
valid HTML subset of a set of given HTML files. While developers could extract
said template by modifying their template engine, this approach would not be
feasible from a delta infrastructure on top of existing systems. To make delta
encoding feasible, this needs to be resolved. To test this approach, one could
choose the most straightforward way imaginable: Just opening a random HTML
file of a page type for a specific website and removing content that is specific
to this page and may change for another one, making sure that we still end up
with a valid HTML file. Since no specific domain knowledge is needed and the
page types are typically limited, this process could quickly be done. However,



8 Wollmer et al.

more research for a templating algorithm is needed to automate and scale this
templating approach.

However, by deleting the text, the content collapses and will increase in size as
soon as the text of the diff arrives. This is generally poorly received by users and
should be avoided. Therefore, one can change the template generation process
from deleting the content to hiding it via the CSS attribute visibility=’hidden’.
The increase in file size of the additional CSS attribute is neglectable since these
additions are just a few bytes after compression. Since this template still has the
content, it can again be used as a preloaded HTML and instantly be rendered.

4.3 Dictionary Transitions

As described in Section 3, most pages share the same header and footer. And
even though the main content does not share many similarities, compressing
one page type dictionary to another generally results in reasonable compression
ratios. This indicates that the other dictionaries can be easily derived after the
browser is populated with an arbitrary dictionary. Therefore, it can also improve
performance for the first page of an unseen page type. The same also applies to
updating deprecated dictionaries to the newest version.

4.4 Predictive Preloading

Preload prediction determines which pages a user will likely navigate soon and
download them beforehand so that they are already available in the cache. The
page can then be instantly served from the cache without downloading it again.
This plays well with page-type dictionaries. While using a page-type dictionary
for compression entirely discards the dictionary calculation process, it also serves
as an actual page and is, therefore, present in the browser cache. With preload
prediction data, this dictionary can be chosen wisely to increase the cache hit
rate. Alternatively, one could use a highly frequented page, like a product ad-
vertised on the home page.

4.5 Shared Dictionary Compression at Scale

As shown in Section 3, we can save 88% of the HTML payload. Applying these
numbers to the statistics provided by Similar Web13, this approach could save
700 TB a month, just for the top 50 e-commerce websites. But shared dictionary
compression failed in the past due to its high complexity and slow adoption.
Adopting shared dictionary compression on an architecture like the one provided
by Speed Kit can eliminate this complexity for website providers. Of course,
this is also of interest to the user. According to Similar Web, an average user
journey consists of 7.5 page loads. Depending on the website, this approach could
download the whole journey of HTML files for the byte "price" of one HTML
(cf. Section 3.1).
13 https://www.similarweb.com/top-websites/e-commerce-and-shopping/

https://www.similarweb.com/top-websites/e-commerce-and-shopping/


Using the Client Cache for Content Encoding: SDC for the Web 9

5 Conclusion

In theory, shared dictionary compression (SDC) seems like the perfect fit for
transmitting web content as it can result in significantly better compression ra-
tios compared with today’s web compression standards such as Brotli. In prac-
tice, however, SDC has yet to be adopted in a web context, because negotiating
dictionaries between client and server has always turned out prohibitively com-
plex. In this paper, we show that HTML pages from the client cache can be
used as dictionaries to reduce the payload of HTML files by up to 88% for single
pages, as soon as browser implementations add support for custom dictionaries
with Brotli. In evaluating the compression ratio for our approach, we show that
the benefit of choosing the smallest delta is negligible when comparing it to us-
ing an arbitrary file as a dictionary. We finally discuss how our approach could
innovate web content delivery through mechanisms like predictive preloading of
web content that are not feasible with the current state of the art.

References

1. Alakuijala, J., Farruggia, A., Ferragina, P., Kliuchnikov, E., Obryk, R., Szabadka,
Z., Vandevenne, L.: Brotli: A general-purpose data compressor. ACM TOI 37(1)

2. Collet, Y., M. Kucherawy, E.: Zstandard Compression and the ’application/zstd’
Media Type. RFC 8878, RFC Editor (Feb 2021)

3. Korn, D., MacDonald, J., Mogul, J., Vo, K.: The VCDIFF Generic Differencing
and Compression Data Format. RFC 3284 (June 2002)

4. McQuade, B., Mixter, K., Lee, W.H., Butler, J.: A proposal for shared dictionary
compression over http (2016)

5. Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van Hoff,
A., Hellerstein, D.: Delta Encoding in HTTP. RFC 3229 (January 2002)

6. Pathan, M., Buyya, R.: A Taxonomy of CDNs, pp. 33–77. Springer Berlin Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-77887-5_2

7. Shapira, O.: SDCH at LinkedIn. (2015), https://engineering.linkedin.com/
shared-dictionary-compression-http-linkedin, accessed: 2023-03

8. Sleevi, R.: Intent to Unship: SDCH (2016), https://groups.google.com/a/
chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ, accessed: 2023-03

9. Weiss, Y., Meenan, P.: Compression dictionary transport (2023), https://github.
com/WICG/compression-dictionary-transport, accessed: 2023-03

10. Wingerath, W., Gessert, F., Witt, E., Kuhlmann, H., Bücklers, F., Wollmer, B.,
Ritter, N.: Speed Kit: A Polyglot & GDPR-Compliant Approach For Caching
Personalized Content. In: ICDE, Dallas, Texas (2020)

11. Wingerath, W., Wollmer, B., Bestehorn, M., Succo, S., Bücklers, F., Domnik, J.,
Panse, F., Witt, E., Sener, A., Gessert, F., Ritter, N.: Beaconnect: Continuous
Web Performance A/B-Testing at Scale. Proceedings of the 48th International
Conference on Very Large Data Bases (2022)

12. Wollmer, B., Wingerath, W., Ferrlein, S., Gessert, F., Ritter, N.: Compaz: Explor-
ing the potentials of shared dictionary compression on the web. In: Proceedings of
the 22nd International Conference on Web Engineering (ICWE) (2022)

13. Wollmer, B., Wingerath, W., Ferrlein, S., Panse, F., Gessert, F., Ritter, N.: The
case for cross-entity encoding in web compression (extended). Journal of Web En-
gineering (To be published) 22(01) (2023)

https://doi.org/10.1007/978-3-540-77887-5_2
https://doi.org/10.1007/978-3-540-77887-5_2
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://github.com/WICG/compression-dictionary-transport
https://github.com/WICG/compression-dictionary-transport

	Using the Client Cache for Content Encoding: Shared Dictionary Compression for the Web

