

Data Validation at Scale

Managing Data Quality in Complex

Data Pipelines

code.talks 2023, Hamburg, Germany
September 14, 2023
Wolle

Material Available at https://wolle.science

- Stream Processing
- Real-Time Databases
- NoSQL & Cloud Systems
- ...

Practice:

- Web Caching •
- Big Data Analytics •
- Anger Management •

.. •

The Importance of Data Validation

Where is data validation integrated into data science pipelines and what is its impact?

Data Quality & Constraints

What dimensions of data quality are there and how can they be ensured?

Scalability-Related Challenges

Why is data validation difficult in data-intensive domains?

Analytics Collection Ingestion Reporting Performance Dashboard code.talks 2023. Sept. 14 **Thursday, 17:00 Tracking** (Data Analytics & Science) (RUM) **Batching Was Yesterday:** Dashboard Real-Time Tracking & Analysis For 100+ Million Visitors Data Analytics & Science Real-Time Alerting Felix Gessert. Batching Was Yesterday: Real-Time Tracking & Analysis For 100+ Million Visitors, code.talks (2023) Ad-hoc SQL Interface Custom

W. Wingerath, B. Wollmer, M. Bestehorn, S. Succo, F. Bücklers, J. Domnik, F. Panse, E. Witt, A. Sener, F. Gessert, N. Ritter. Beaconnect: Continuous Web Performance A/B-Testing at Scale, VLDB (2022)

Reporting

- Goal: verify that data in the pipeline is in an acceptable state for downstream processing, e.g.
 - External reporting (statistics, visualizations & dashboarding)
 - Internal reporting (debugging, product optimizations)
 - Decision-making (analytics, machine learning)
- Data validation can be integrated in and between all stages

Dimensions of Data Quality: Completeness

- There are different dimensions of data quality, especially:
 - Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Completeness

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	"670ms"	123	null
13:26:48.139	9cddf7	Firefox	692 654	456	abc.de/red
13:28:23.857	0b577a	Firefox	0.256	456	abc.de/blue
13:29:17.468	faf55e	Edge	1.598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Unload Beacon Reliability as an Example Challenge

- When is beacon loss a problem?
 - → For which beacon types? For which beacon strategies?
- Where is beacon loss a problem?
 - → For which browsers? For which device types?

Unload Beacon Reliability by Strategy

```
addEventListener("unload", (event) => {
 navigator.sendBeacon(url, JSON.stringify(data));
});
addEventListener("beforeunload", (event) => {
 navigator.sendBeacon(url, JSON.stringify(data));
addEventListener("pagehide", (event) => {
 navigator.sendBeacon(url, JSON.stringify(data));
});
addEventListener("visibilitychange", (event) => {
 if (document.visibilityState === 'hidden') {
    navigator.sendBeacon(url, JSON.stringify(data));
```

available on all platforms

experimental feature

(only available as origin trial in Chrome)

```
var beacon = new window.PendingPostBeacon(
  url,
    timeout: 60000,
    backgroundTimeout: 0
 });
beacon.setData(JSON.stringify(data));
```

Erik Witt. Unload Beacon Reliability: Benchmarking Strategies for Minimal Data Loss, Speed Kit Tech Blog (2023)

Unload Beacon Reliability by Strategy

```
addEventListener("unload", (event) => {
  navigator.sendBeacon(url, JSON.stringify(data));
                                                                            —— Available on all platforms
addEventListener("befor
                                                                                                       code.talks 2023, Sept. 14
                                                                                                    Thursday, 14:00
                                                                                                                             s origin
                                                                                                  (Data Analytics & Science)
                                                       Data Viz for Engineers:
addEventListener("pageh
                                           Optimizing Insight & Decision Making Through
                                                                                                  new window.PendingPostBeacon(
                                                            Visualization
                                                          Data Analytics & Science
                                                               </>
code.talks
addEventListener("visibility
                                           Sophie Ferrlein. Data Viz for Engineers: Optimizing Insight & Decision Making
                                                                                                  ndTimeout: 0
                                      Through Visualization, code.talks (2023)
  if (document.visibilityStat
     navigator.sendBeacon(url, JSON.stringify(data));
                                                                                 beacon.setData(JSON.stringify(data));
                                                                                                                      Erik Witt. Unload Beacon Reliability: Benchmarking
                                                                                                                      Strategies for Minimal Data Loss, Speed Kit Tech Blog (2023)
```

Unload Beacon Reliability by Strategy & Device

Unload Beacon Reliability by Strategy & Browser

Based on 52 million page views on a globally operating e-commerce site measured by Speed Kits real user-monitoring | August 2023

Unload Beacon Reliability: The Ideal Combo Strategy

Based on 52 million page views on a globally operating e-commerce site measured by Speed Kits real user-monitoring | August 2023

Erik Witt. Unload Beacon Reliability: Benchmarking Strategies for Minimal Data Loss, Speed Kit Tech Blog (2023)

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	"670ms"	123	null
13:26:48.139	9cddf7	Firefox	692 654	Same 456	abc.de/red
13:28:23.857	0b577a	Firefox	0.256	456 sessi	abc.de/blue
13:29:17.468	faf55e	Edge	1.598	456 J	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: Browser values should be unified for all records in the same session!

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	"670ms"	123	null
13:26:48.139	9cddf7	Firefox	692 654	456	abc.de/red
13:28:23.857	0b577a	Firefox	0.256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1.598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: Browser values should be unified for all records in the same session!

→ value may be replaced with majority vote (another reasonable option: replace old values with latest one)

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	"670ms"	123	null
13:26:48.139	9cddf7	Firefox	692 654	456	abc.de/red
13:28:23.857	0b577a	Firefox	0.256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1.598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

<u>Note</u>: All values represent milliseconds, but formats differ depending on browser.

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	670	123	null
13:26:48.139	9cddf7	Firefox	692 654	456	abc.de/red
13:28:23.857	0b577a	Firefox	256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: All values represent milliseconds,
but formats differ depending on browser.
→ values may be converted to integer

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Accuracy

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	670	123	null
13:26:48.139	9cddf7	Firefox	692 654	456	abc.de/red
13:28:23.857	0b577a	Firefox	256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: Despite being in the right format, one value does not represent a reasonable timer value.

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - o Consistency: Does data have a valid format and does it comply with business semantics?
 - Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Accuracy

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	670	123	null
13:26:48.139	9cddf7	Firefox	null	456	abc.de/red
13:28:23.857	0b577a	Firefox	256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold
	•	•	•	•	1

<u>Note</u>: Despite being in the right format, one value does not represent a reasonable timer value.

→ broken value may be removed

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - Accuracy: Do data items represent their corresponding real-world entities well?
 - o Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Uniqueness

Timestamp	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	670	123	null
13:26:48.139	9cddf7	Firefox	null	456	abc.de/red
13:28:23.857	0b577a	Firefox	256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: The ID field should be unique, but two different records share the same value!

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - o Consistency: Does data have a valid format and does it comply with business semantics?
 - Accuracy: Do data items represent their corresponding real-world entities well?
 - Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Uniqueness

- There are different dimensions of data quality, especially:
 - Completeness: Do we have all the data we need to assess page load performance?
 - o Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Dimensions of Data Quality: Uniqueness

Timestamp.	Pageload ID	Browser	LCP (Performance)	Session ID	URL
09:05:04.578	37ab08	Edge	670	123	null
13:26:48.139	9cddf7	Firefox	null	456	abc.de/red
13:28:23.857	0b577a	Firefox	256	456	abc.de/blue
13:29:17.468	faf55e	Firefox	1598	456	abc.de/sold
20:45:38.941	faf55e	null	null	null	abc.de/sold

Note: The ID field should be unique, but two different records share the same value!

→ merge duplicates into a single record

- There are different dimensions of data quality, especially:
 - o Completeness: Do we have all the data we need to assess page load performance?
 - Consistency: Does data have a valid format and does it comply with business semantics?
 - o Accuracy: Do data items represent their corresponding real-world entities well?
 - Uniqueness: Are duplicate records known and are all unique attributes actually distinct?

Maintaining Data Quality With Constraints

- Constraints are rules, conditions, or limits that data must adhere to
- Type Checks represent expectations on the data format, e.g.
 - Value range for numerical data (e.g. [0,MAX_INTEGER) for load timers)
 - Format or pattern for string-valued data (e.g. ISO 8601 for timestamps)
 - Structure for complex attributes (e.g. required keys for JSON objects)
- Complex conditions can further describe complex semantics such as
 - Cross-field or cross-record relationships (e.g. same browser within sessions)
 - Referential integrity between records in different collections
 - Custom constraints for domain semantics

Example: Declarative Constraints With Pandera (1/3)

```
import pandas as pd
import pandera as pa
from pandera import Column, DataFrameSchema, Check
# Define the schema
schema = DataFrameSchema(
        "Timestamp": Column(pa.DateTime),
        "Pageload ID": Column(pa.String,
            Check(lambda x: x.str.len() == 8)),
        "Browser": Column(pa.String,
            Check(lambda x: x.isin(["Chrome", "Edge", "Firefox"]))),
        "LCP": Column(pa.Int,
            Check(lambda x: (x \ge 0) & (x \le 600000)),
        "Session ID": Column(pa.Int),
```

Example: Declarative Constraints With Pandera (2/3)

```
# valid data item
qood = {
    "Timestamp": [pd.Timestamp("2023-05-10 13:26:48.139")],
    "Pageload ID": ["9cddf7"],
    "Browser": ["Firefox"],
    "LCP": [256],
    "Session ID": [456],
# invalid data item
bad = \{
    "Timestamp": [pd.Timestamp("2023-05-10 09:05:04.578")],
    "Pageload ID": ["37ab08"],
    "Browser": ["Edge"],
    "LCP": [692654], # timer value out of bounds
    "Session ID": [123],
```

Example: Declarative Constraints With Pandera (3/3)

```
for record in [good, bad]:
    record_id = record['Pageload ID'][0]
    try:
        validated = schema(pd.DataFrame(record))
        print(f"\nValidation passed for record {record_id}!")
    except pa.errors.SchemaError as e:
        print(f"\nValidation FAILED for record {record_id}:")
        print(e)
```

Fundamental Challenge: Scalability

One Month in Data Errors at Baqend: April 2023

Challenging at Scale: Complexity

Timestamn I Pageload ID I Browser I I Session ID I IIRI I I I II I I I I I I I I I I	LCP (Performance)	Session ID URL		Session Length	Conversion
				20118011	
09:05:04.578 37ab08 Edge 670 123 null	670	123 null		1	0
13:26:48.139 9cddf7 Firefox null 456 abc.de/red	null	456 abc.c	le/red		
13:28:23.857	256	456 abc.c	le/blue	3	1
13:29:17.468 faf55e Firefox 1598 456 abc.de/sold	1598	456 abc.c	le/sold		
20:45:38.941 faf55e null null null abc.de/sold	null	null abc.c	le/sold		

- Manual constraint definition is often infeasible, because of ...
 - ... inherent data complexity (often <u>hundreds</u> of attributes)
 - ... aggregation, derived storage, and evolving schemas
 - ... a plethora of other data stores to integrate!
- → Automation is necessary!

Challenging at Scale: Continuity

- Computing validation metrics from scratch periodically can be infeasible, because of ...
 - ... strict timing requirements
 - ... efficiency or cost reasons
 - ... data privacy reasons

Details in Felix' talk!

W. Wingerath, B. Wollmer, M. Bestehorn, S. Succo, F. Bücklers, J. Domnik, F. Panse, E. Witt, A. Sener, F. Gessert, N. Ritter. Beaconnect: Continuous Web Performance A/B-Testing at Scale, VLDB (2022)

> Incremental computation can be the only option!

Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biessmann: <u>Automating Large-Scale Data Quality Verification</u>, VLDB 2018.

Challenging at Scale: Volatility

- Specifying generalized constraints can be difficult in large deployments, because of ...
 - o ... temporal fluctuations (e.g. throughout the day, on black Friday, or during holidays)
 - ... multi-tenancy (e.g. different data patterns by customer timezone or domain)
- → Elasticity & Multi-Tenancy requirements can be challenging!

Challenging at Scale: "Continuity" (Continuity + Volatility)

So How Do You Handle All This?

Advanced Techniques

- Inferring constraints
- Adapting to schema changes
- Incremental computation of complex measures

Tooling & Frameworks

- Validation libraries such as Great Expectations, Pandera, TFDV, or Deequ
- Preprocessing and validation with Apache Spark and Apache Flink

Further Challenges

- Handling distribution (validation per partitioning, avoiding skew, ...)
- Efficiency and performance (load distribution, approximation, ...)
- Operational challenges (anomaly detection, fixing, load shedding, ...)

Data Validation at Scale: Summary

- Data Quality can be measured along dimensions such as completeness, consistency, accuracy, and uniqueness
- Constraints specify expectations about the data and can be used to enforce them
- Data Validation is the process of ensuring high data quality for processes like analysis, modeling, and decision-making
- Data Validation Challenges at Scale include
 - Complexity: schemas are often too complex to define constraints manually
 - Volatility: data varies throughout the day, by season, or by customer
 - Continuity: incremental processing is required when computation from scratch is infeasible

Thanks! Questions?

Material Available at https://wolle.science