Scalable Stream Processing Surveying Storm, Samza, Spark & Flink

Wolfram Wingerath

ww@baqend.com

September 12, techcamp 2018, Hamburg

PhD Thesis & Research

About me Wolfram Wingerath

Distributed Systems Engineer

Research:

•

- Real-Time Databases
- Stream Processing
- NoSQL & Cloud Databases

Practice:

- Backend-as-a-Service
 - Web Caching •
 - Real-Time Database •

•

Outline

D Introduction Big Data in Motion

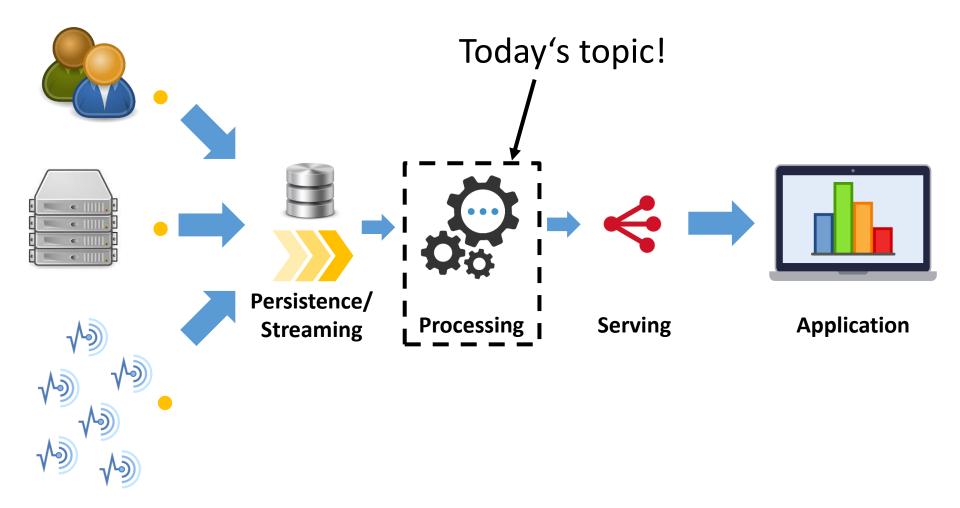
System Survey Big Data + Low Latency

Wrap-Up Summary & Discussion

- Big Picture:
 - A Typical Data Pipeline
 - Processing Frameworks
- Processing Models:
 - Batch Processing
 - Stream Processing

IN PRACTICE Scalable Data Processing

A Data Processing Pipeline



INTRODUCTION

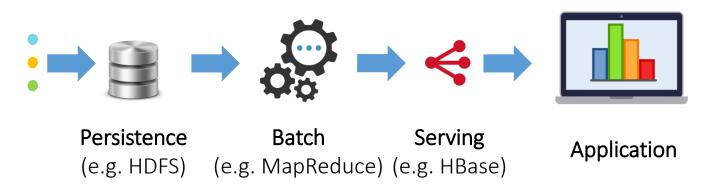
Batch vs Stream Processing

Big Data Processing Frameworks What are your options?

Batch Processing

"Volume"

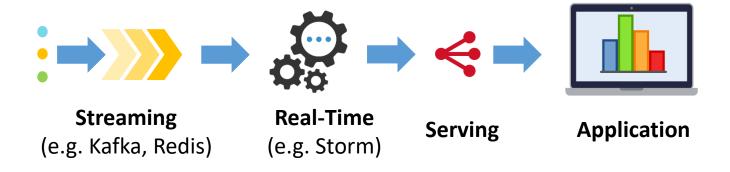
- **Cost-effective** & Efficient
- **Easy to reason about**: operating on complete data But:
- **High latency**: jobs periodic (e.g. during night times)



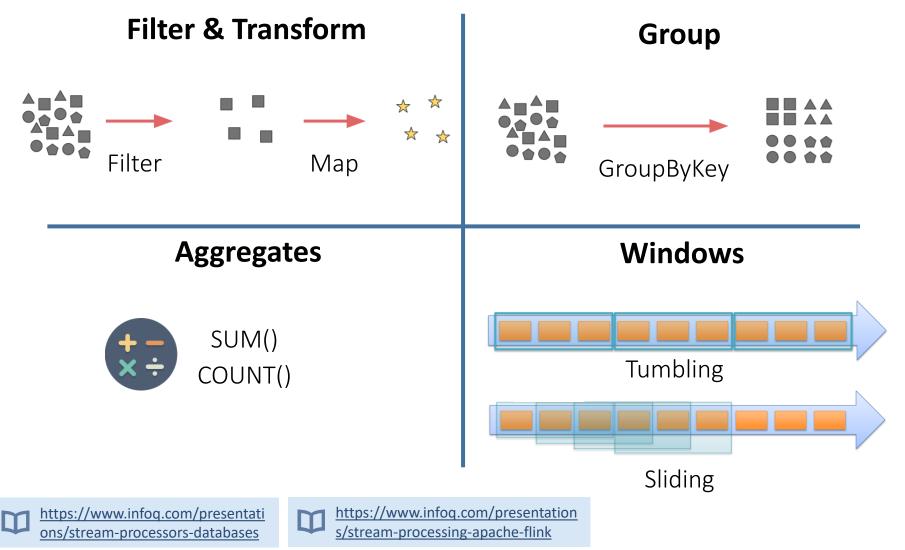
Stream Processing

"Velocity"

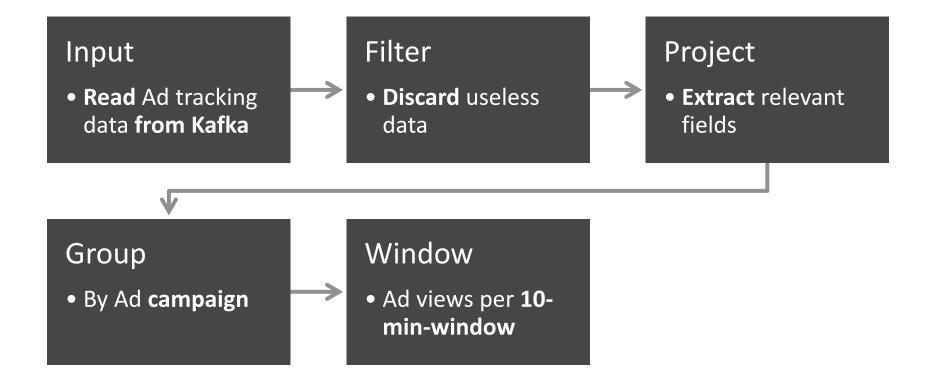
- Low end-to-end latency
- Challenges:
 - Long-running jobs no downtime allowed
 - Asynchronism data may arrive delayed or out-of-order
 - Incomplete input algorithms operate on partial data
 - More: fault-tolerance, state management, guarantees, ...



Typical Stream Operators Examples



Typical Use Case Example from Yahoo!



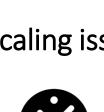
Wrap-up Data Processing

• Processing frameworks abstract from scaling issues

- easy to reason about
- extremely efficient
- huge input-output latency

Stream processing

- quick results
- purely incremental
- potentially complex to handle



Outline

Introduction Big Data in Motion

System Survey Big Data + Low Latency

Wrap-Up Summary & Discussion

- System Survey:
 - Processing Model Overview
 - Storm/Trident
 - Samza
 - Spark Streaming
 - Flink

SURVEY

Popular Stream Processing Systems

Processing Models

Batch vs. Micro-Batch vs. Stream

micro-batch batch stream Spark Streaming samza **Amazon Elastic MapReduce** high throughput low latency

Storm "Hadoop of real-time"

Overview

- First production-ready, well-adopted stream processor
- **Compatible**: native Java API, Thrift, distributed RPC
- Low-level: no primitives for joins or aggregations
- Native stream processor: latency < 50 ms feasible
- **Big users**: Twitter, Yahoo!, Spotify, Baidu, Alibaba, ...

History

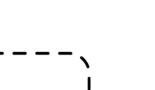
- **2010**: developed at BackType (acquired by Twitter)
- 2011: open-sourced
- 2014: Apache top-level project

Dataflow

Directed Acyclic Graphs (DAG): Spouts: pull datarinto topology

- Bolts: do procesting, emit data
- Asynchronous
- spout Lineage can be tracked for each tuple \rightarrow At-least-once has 2x messaging bolt

overhead



bolt

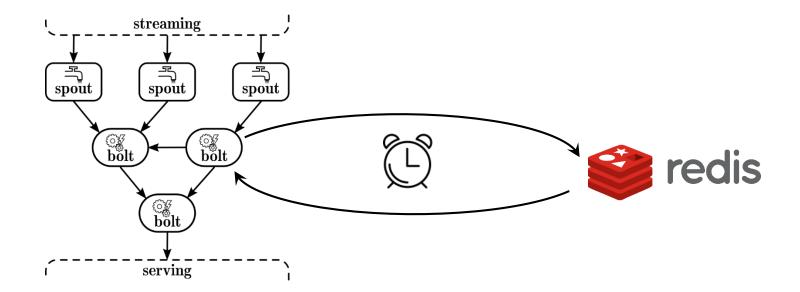
bölt

serving

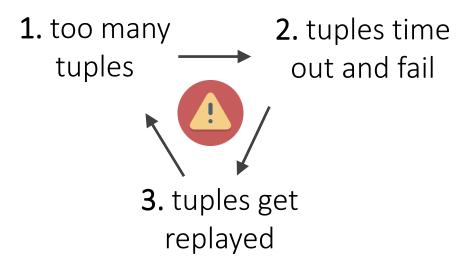
Cycles!

State Management Recover State on Failure

- In-memory or Redis-backed reliable state
- Synchronous state communication on the critical path
 → infeasible for large state



Back Pressure Throttling Ingestion on Overload



Approach: monitoring bolts' inbound buffer

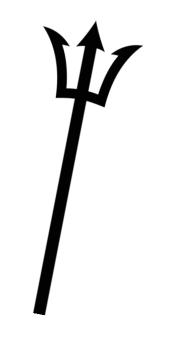
- 1. Exceeding **high watermark** \rightarrow throttle!
- 2. Falling below **low watermark** \rightarrow full power!

Trident

Stateful Stream Joining on Storm

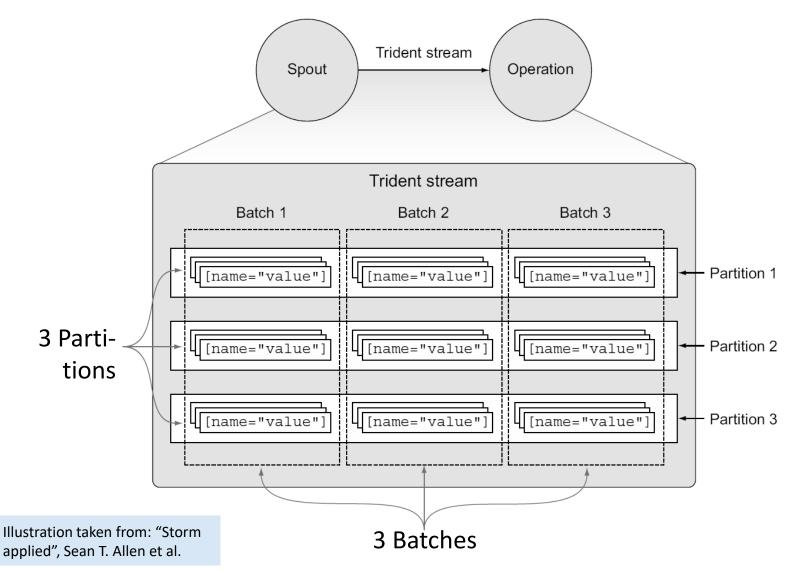
Overview:

- Abstraction layer on top of Storm
- Released in 2012 (Storm 0.8.0)
- Micro-batching
- New features:
 - High-level API: aggregations & joins
 - Strong ordering
 - Stateful exactly-once processing
 - \rightarrow Performance penalty



Π

Partitioned Micro-Batching



Samza

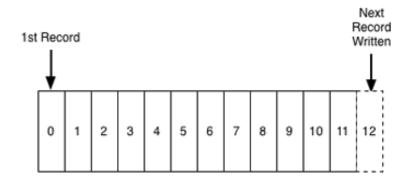
Real-Time on Top of Kafka

Overview

- Co-developed with Kafka
 → Kappa Architecture
- Simple: only single-step jobs
- Local state
- Native stream processor: low latency
- Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, ...

History

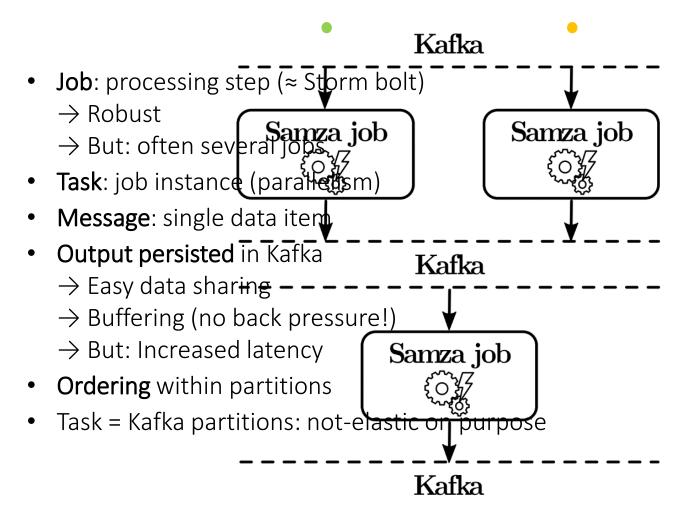
- Developed at LinkedIn
- 2013: open-source (Apache Incubator)
- 2015: Apache top-level project



samza

Dataflow

Simple By Design

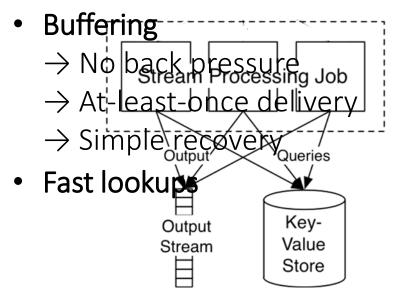


Martin Kleppmann, Turning the database inside-out with Apache Samza (2015) <u>https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/</u> (2017-02-23)

Local State

samza

Advantages of local state:



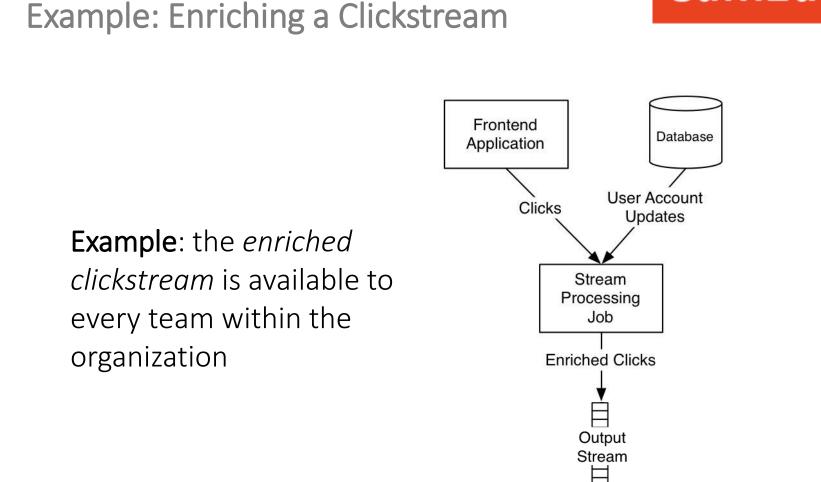
Output Changelog Stream Stream

Stream Processing Job

Remote State

Local State

Illustrations taken from: Jay Kreps, *Why local state is a fundamental primitive in stream processing* (2014) <u>https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing</u> (2017-02-26)



Dataflow

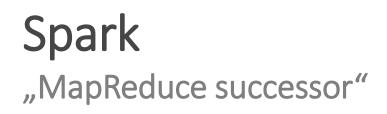
State Management Straightforward Recovery

IT

samza

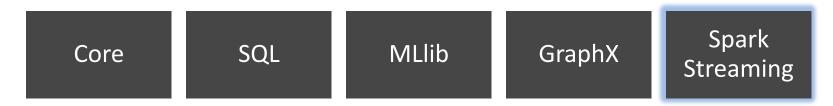


Illustration taken from: Navina Ramesh, *Apache Samza, LinkedIn's Framework for Stream Processing* (2015) <u>https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing</u> (2017-02-26)



Overview

• High-level API: immutable collections (RDDs)



- **Community**: 1000+ contributors in 2015
- **Big users**: Amazon, eBay, Yahoo!, IBM, Baidu, ...

History

- 2009: developed at UC Berkeley
- 2010: open-sourced
- 2014: Apache top-level project

Spark Streaming

Overview

- High-level API: DStreams (~Java 8 Streams)
- Micro-Batching: seconds of latency
- Rich features: stateful, exactly-once, elastic

History

- 2011: start of development
- 2013: Spark Streaming becomes part of Spark Core

Spark Streaming Core Abstraction: DStream

Resilient Distributed Data set (RDD)

- Immutable collection & deterministic operations
- Lineage tracking:
 - \rightarrow state can be reproduced
 - ightarrow periodic checkpoints reduce recovery time

DStream: Discretized RDD

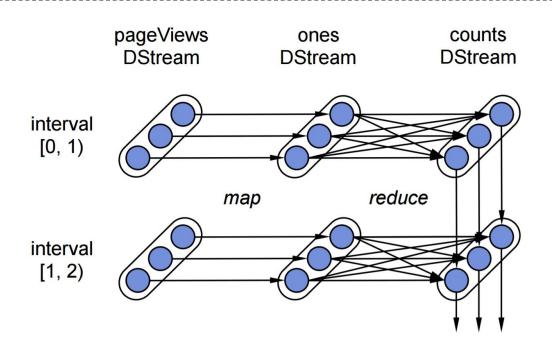
- **RDDs are processed in order**: no ordering within RDD
- RDD scheduling ~50 ms \rightarrow latency >100ms

Illustration taken from:

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

Example Counting Page Views

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)



Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." *Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles*. ACM, 2013.

Flink

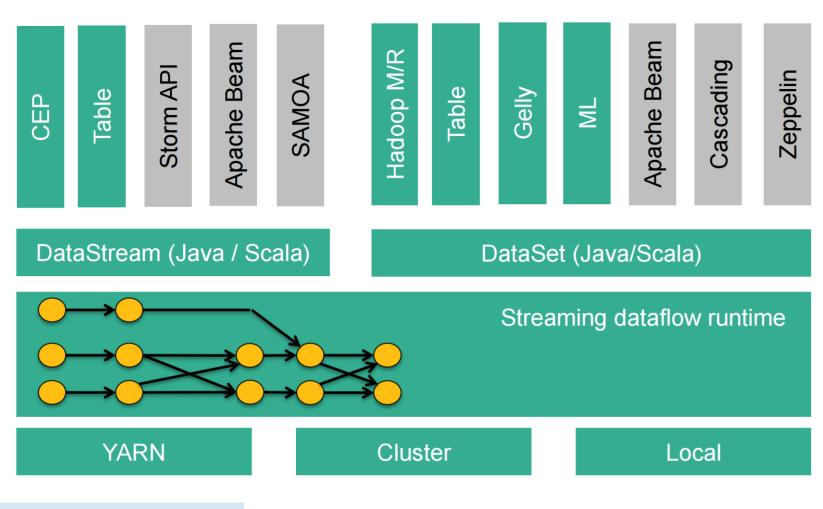
Overview

- Native stream processor: Latency <100ms feasible
- Abstract API for stream and batch processing, stateful, exactlyonce delivery
- Many libraries: Table and SQL, CEP, Machine Learning , Gelly...
- Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando...

History

- 2010: start as Stratosphere at TU Berlin, HU Berlin, and HPI Potsdam
- 2014: Apache Incubator, project renamed to Flink
- 2015: Apache top-level project

Architecture Streaming + Batch



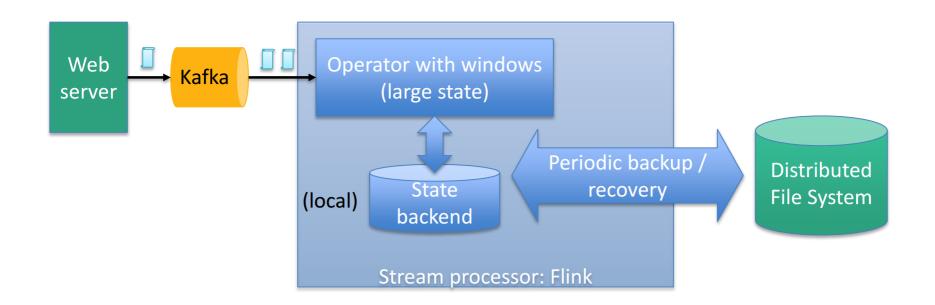
https://www.infoq.com/presentation s/stream-processing-apache-flink

Π

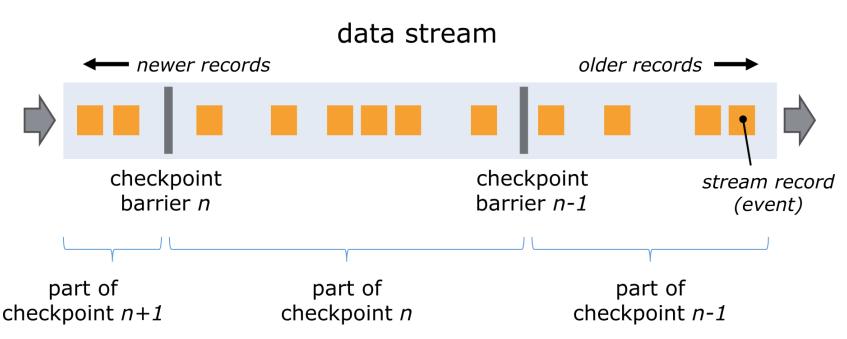
Managed State

Streaming + Batch

- Automatic **Backups** of local state
- Stored in RocksDB, Savepoints written to HDFS



Highlight: Fault Tolerance Distributed Snapshots



Exactly-once

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream checkpointing.html (2017-02-26)

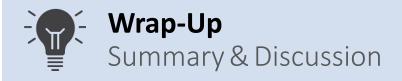
Illustration taken from:

- Ordering within stream partitions
- Periodic checkpoints
- Recovery:
 - 1. reset state to checkpoint
 - 2. replay data from there

Outline

Discrete State St

System SurveyBig Data + Low Latency



- Discussion:
 - Comparison Matrix
 - Other Systems
- Takeaway

WRAP UP

Side-by-side comparison

Comparison

	Storm	Trident	Samza	Spark Streaming	Flink (streaming)
Strictest Guarantee	at-least- once	exactly- once	at-least- once	exactly-once	exactly-once
Achievable Latency	≪100 ms	<100 ms	<100 ms	<1 second	<100 ms
State Management	(small state)	(small state)	\checkmark	\checkmark	\checkmark
Processing Model	one-at-a- time	micro-batch	one-at-a- time	micro-batch	one-at-a- time
Backpressure	\checkmark	\checkmark	no (buffering)	\checkmark	\checkmark
Ordering	×	between batches	within partitions	between batches	within partitions
Elasticity	\checkmark	\checkmark	×	\checkmark	\checkmark

Performance

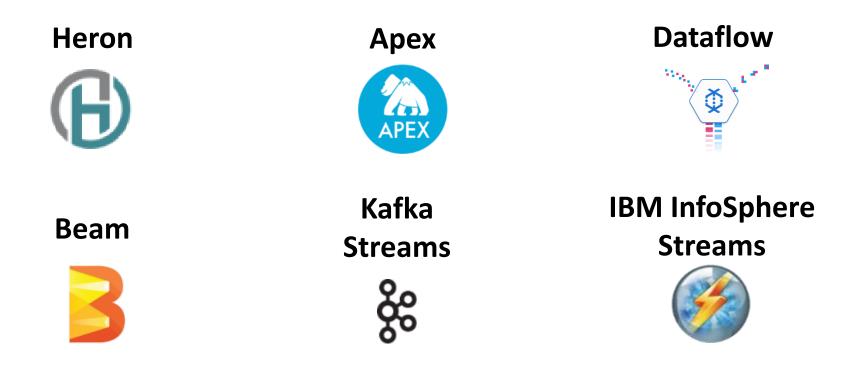
Yahoo! Benchmark

- Based on **real use case**:
 - Filter and count ad impressions
 - 10 minute windows

"Storm [...] and Flink [...] show sub-second latencies at relatively high throughputs with Storm having the lowest 99th percentile latency. Spark streaming [...] supports high throughputs, but at a relatively higher latency."

> From https://yahooeng.tumblr.com/post/135321837876/ benchmarking-streaming-computation-engines-at

Other Systems



And even more: Kinesis, Gearpump, MillWheel, Muppet, S4, Photon, ...

Outline

Introduction Big Data in Motion

System Survey Big Data + Low Latency

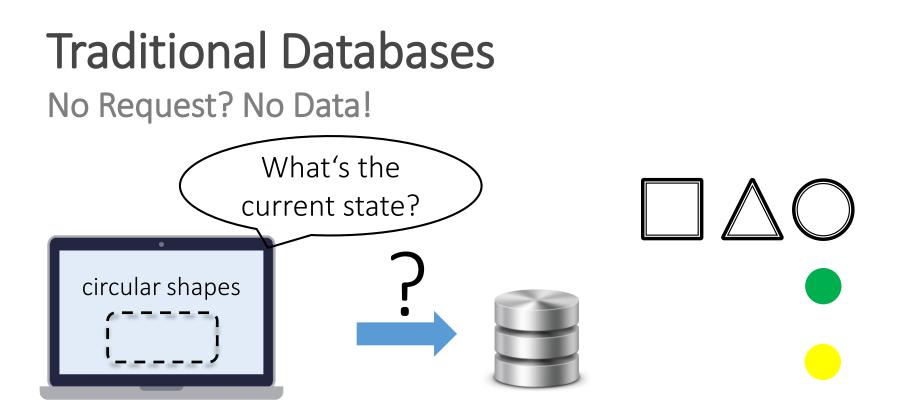
Wrap-Up Summary & Discussion

- Real-Time Databases:
 - Why Push-Based Database Queries?
 - Where Do Real-Time Databases Fit in?
- Comparison Matrix:
 - Meteor
 - RethinkDB
 - Parse
 - Firebase
 - Bagend

REAL-TIME DBS Combining databases with streaming

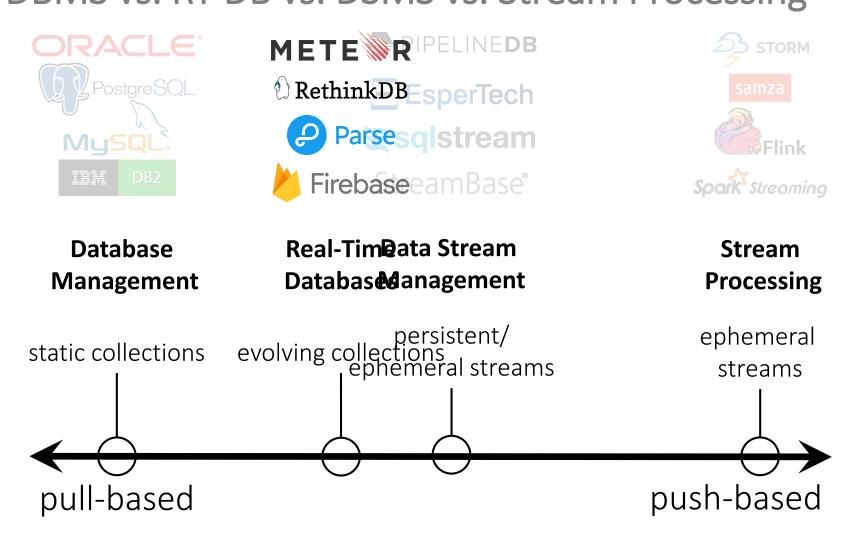
UE30 x

SEPUSD M15 1.4505 1.00 1.4508 SUTP #



Query maintenance: periodic polling → Inefficient → Slow

Quick Comparison DBMS vs. RT DB vs. DSMS vs. Stream Processing



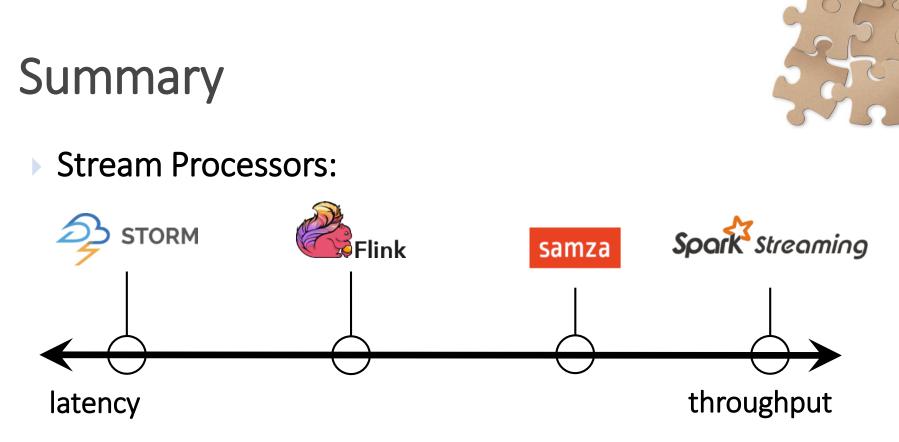
Real-Time Databases

In a Nutshell

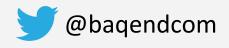
		NETER	RethinkDB Parse Fireh		
	Meteor Poll-and-Diff Oplog Tailing		RethinkDB	Parse	Firebase
Scales with write TP	\checkmark	×	×	×	×
Scales with no. of queries	×	\checkmark	✓	\checkmark	? (100k connections)
Composite queries (AND/OR)	\checkmark	\checkmark	✓	\checkmark	(AND In Firestore)
Sorted queries	\checkmark	\checkmark	\checkmark	×	(single attribute)
Limit	\checkmark	\checkmark	\checkmark	×	 ✓
Offset	\checkmark	\checkmark	×	×	(value-based)

TAKEAWAY Trade-Offs in Stream Processing

....



- Real-Time Databases integerate
 Storage & Streaming
- Learn more: <u>slides.baqend.com</u>



Who We Are

Our Product

Speed Kit:

- Accelerates Any Website
- Pluggable
- Easy Setup

test.speed-kit.com

Our Services

- Web & Data Management
 Workshops
- Performance Auditing
- Implementation Services

<u>consulting@baqend.com</u>

Wolfram Wingerath

ww@baqend.com

Distributed Systems Engineer