et PR—
e ® ."‘.‘: » »
. Po 0y
e i 5 e ® B3
P L gl S
v o . -
e e o - ..
4 Cans
® ,. l'.. ~ @ b -« k5]
o N
@ I o o ® . @ . @
7a 7
. < 3 B e Al R AT
Y 5 »
7 . @ ®
® 3 B ® e “®
&] ¢
& B
ot @ e [B
& @ 9 » ®
. L] @
'@ * P L

Real-Time Data Management
For Big Data

Wolfram Wingerath, Felix Gessert, Norbert Ritter

{wingerath, gessert, ritter}@informatik.uni-hamburg.de
March 29, EDBT 2018, Vienna

UH d
BaQen
2 Universitit Hamburg

www.bagend.com

Who We Are

Norbert Ritter
Professor

Research:

* NoSQL & Cloud Databases
* Polyglot Persistence

e Database Benchmarking

UH
i‘ti_
2 Universitit Hamburg

Felix Gessert
CEO

00

Wolfram Wingerath

Developer
Practice:
Backend-as-a-Service
Web Caching

Real-Time Database

BaQend

www.bagend.com

Outline

[

o
o

Introduction
Where From? Where To?
Stream Processing

Real-Time Databases

Future Directions

A Short History of
Data Management
Database Management:
 (No)SQL Decision Tree
 (No)SQL Toolbox
e Active Database
Features
Data Stream Management:
* General Architecture
* Stream Operators
* Approximation &
Sampling
* CEP

A Short History of Data Management
Hot Topics Through The Ages

: CEP & Stream
Relational Databases S Processing
B d
Entity-Relationship Model R Spark agen
: apReduce
Trlggers SQL Starburst STREAM . Samza
Ingres Standard Telegraph Bigtable Meteor
HiPAC GFS
System R Rapide flink | e
PostgreSQL DYREmE N | Firebase
Relational 5 Aurora & | RethinkDB
Model Borealis ~torm
Big Data & Real-Time

ive D
Active Databases NoSQL Databases

NoSQL Database Systems:
A Survey and Decision Guidance

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter

Universitit Hamburg, Germany
{gessert|, wingerath, friedrich, ritter}@informatik.uni-hamburg.de

Abstract. Today, data is generated and consumed at unprecedented
scale. This has lead to novel approaches for scalable data management
subsumed under the term “NoSQL” database systems to handle the ever-
increasing data volume and request loads. However, the heterogeneity
and diversity of the numerous existing systems impede the well-informed
selection of a data store appropriate for a given application context.
Therelore, this article gives a top-down overview ol the lield: Instead
of contrasting the implementation specilics of individual representatives,
we propose a comparative classification model that relates functional and
non-functional requirements to techniques and algorithms employed in
NoSQL databases. This NoSQL Toolbox allows us to derive a simple
decision tree to help practitioners and researchers filter potential system
candidates based on central application requirements.

1 Introduction

Traditional relational database management systems (RDBMSs) provide
powerful mechanisms to store and query structured data under strong con-
sistency and transaction guarantecs and have reached an unmatched level of
reliability, stability and support through decades of development. In recemnt
vears, however, the amount of useful data in some application areas has become
so vast that it cannot be stored or processed by traditional database solutions.
User-generated content in social networks or data retrieved from large sensor
networks are only two examples of this phenomenon commonly referved to as
Big Data [35]. A class of novel data storage systems able to cope with Big Data
are subsumed under the term NoSQL databases, many of which offer hori-
zontal scalability and higher availability than relational databases by sacrificing
querying capabilities and consistency guarantees. These trade-offs are pivotal for
service-oriented computing and as-a-service models, since any stateful service
can only be as scalable and fault-tolerant as its underlying data store.

There are dozens of NoSQL database systems and it is hard to keep track of
where they excel, where they fail or even where they differ, as implementation
details change quickly and feature sets evolve over time. In this article, we there-
fore aim to provide an overview of the NoSQL landscape by discussing employed
concepts rather than system specificities and explore the requirements typically
posed to NoSQL database systems, the techniques used to fulfil these require-
ments and the trade-offs that have to be made in the process. Our focus lies
on key-value, document and wide-column stores, since these NoSQL categories

http://www.bagend.com
[files/nosql-survey.pdf

(No)SQL Decision Tree

Fast Looku ps

RA ' Unbounded
Ap i Cp ACID iAvalablllty Ad- hoc

Access

Complex Queries

HDD-Size ' Unbounded

Query Pattern

Analytics
! !
Redis Cassandra HBase RDBMS CouchDB MongoDB Hadoop, Spark
Memcache Riak MongoDB Neo4j MongoDB RethinkDB Parallel DWH
Voldemort CouchBase RavenDB SimpleDB HBase,Accumulo Cassandra, HBase
Aerospike DynamoDB| |[MarkLogic ElasticSeach, Solr Riak, MongoDB
T R < i < R < T < -
Cache Shbopi”jcg- I_?r?er m m NS(gaaI . Big Data
_ aske (__History J etwor

Example Applications

(No)SQL Decision Tree

RA

Access

|
Fast Looku ps Complex Queries

H Unbounded HDD-Size I Unbounded
0 @
ACID Availability Ad-hoc Analytics

1 N

Purpose:

Application Architects: narrowing down the potential
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs

Functional

Scan Queries

\ -
Range-Sharding

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Techniques

Sharding

Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Storage Management

Logging
Update-in-Place
Caching

In-Memory Storage
Append-Only Storage

Query Processing

Global Secondary Indexing
Local Secondary Indexing
Query Planning

Analytics Framework
Materialized Views

Non-Functional

Data Scalability

Write Scalability

Read Scalability

Elasticity

Consistency

Write Latency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Functional Techniques Non-Functional

Sharding Data Scalability

Scan Queries

Range-Sharding

Hash-Sharding

Entity-Group Sharding Write Scalability

ACID Transactions Consistent Hashing
Shared-Disk Read Scalability
Conditional or Atomic Writes Elasticity
Joins

Sorting

Sharding (aka Partitioning, Fragmentation)
Scaling Storage and Throughput

Horizontal distribution of data over nodes

AF Franz Shard 1

LS8 Shard 3

Partitioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)

Sharding

Approaches
Hash-based Sharding

Hash of data values (e.g. key) determines partition (shard)
Pro: Even distribution
Contra: No data locality

Range-based Sharding
Assigns ranges defined over fields (shard keys) to partitions
Pro: Enables Range Scans and Sorting
Contra: Repartitioning/balancing required

Entity-Group Sharding
Explicit data co-location for single-node-transactions
Pro: Enables ACID Transactions
Contra: Partitioning not easily changable

m David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85—98, June 1992.

Sharding
Approsches

Hash-based Sharding MongoDB, Riak, Redis,
Hash of data values (e.g. key) d Cassandra, Azure Table,
Pro: Even distribution Dynamo

Contra: No data locality .

Range-based Sharding
Assigns ranges defined over fie BigTable, HBase, DocumentDB
Pro: Enables Range Scans and ¢ Hypertable, MongoDB,

S . . RethinkDB, E
Contra: Repartltlomng/balancnvet '_n » ESPresso

Entity-Group Sharding

Explicit data co-location for sin
Pro: Enables ACID T, , G-Store, MegaStore,

ro- tnha eS_ T ransact/gns Relational Cloud, Cloud SQL
Contra: Partitioning not easily ¢ seryver

m David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85—98, June 1992.

Functional

ACID Transactions

Conditional or Atomic Writes

Techniques

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Non-Functional

Read Scalability

Consistency

Write Latency

Read Latency

Read Availability

Write Availability

Replication
Read Scalability + Failure Tolerance

Stores N copies of each data item

nc‘nrof‘ousl
chronoy®

Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

m Ozsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)

Replication: When

Asynchronous (lazy)
Writes are acknowledged immediately

Performed through log shipping or update propagation
Pro: Fast writes, no coordination needed

Contra: Replica data potentially stale (inconsistent)
Synchronous (eager)

The node accepting writes synchronously propagates
updates/transactions before acknowledging

Pro: Consistent

Contra: needs a commit protocol (more roundtrips),
unavaialable under certain network partitions

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Replication: When

Asynchronous (lazy)

Writes are acknowledged imn Implemented in

Performed through log shippii bynamo , Riak, CouchDB,
Pro: Fast writes, no coordinat| Redis, Cassandra, Voldemort,

Contra: Replica data potentiall M°ngoD8, RethinkDB
Synchronous (eager)

The node accepting writes syn Implemented in [

updates/transactions before ¢
BigTable, HBase, Accumulo,

Pro: Consistent CouchBase, MongoDB,
Contra: needs a commit protd RethinkDB

unavaialable under certain network partitions

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Replication: Where

Master-Slave (Primary Copy)

Only a dedicated master is allowed to accept writes, slaves are
read-replicas

Pro: reads from the master are consistent
Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)

The server node accepting the writes synchronously
propagates the update or transaction before acknowledging
Pro: fast and highly-available

Contra: either needs coordination protocols (e.g. Paxos) or is
Inconsistent

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Functional Techniques Non-Functional

Storage Management

Logging Read Latency
Update-in-Place

Caching

In-Memory Storage Write Throughput
Append-Only Storage

Durability

NoSQL Storage Management

In a Nutshell
A o RR || SR
o rRW |[sw
S RR || SR
7 o | Il W sw

A
a - SR
-
SW
\ 4

[Low Performance
[] High Performance

RR: Random Reads
RW: Random Writes

Typical Uses in DBMSs:

Caching
Primary Storage
Data Structures

Caching

Logging
Primary Storage

Logging
Primary Storage

In-Memo
Data [. v/
Caching
RAM
Update-In-
f f Place
Data < Append-Only
I/O
Log < Logging
Persistent Storage

SR: Sequential Reads
SW: Sequential Writes

NoSQL Storage Management

In a Nutshell

Improves
latency.
Typical Uses in DBMSs:
A In-Memory/

< RR|| SR | , Exdifing Data [¢ Caching

LO" e Primary Storage -

> RW | SW e Data Structures s good for
» read latency.
Q \. ___/ ™~ Update-In-
< RR || SR | e Caching
5 § e Logging If |; - Place
S S\W | ¢ Primary Storage
n @ Increases write

© T Append-Only

g throughput. /0

g . >R * Logging Log < Logging
T W e Primary Storage
S Persistent Storage yd
\ —

. Low Performance RR: Random Reads SR: Sequential Reads Promotes durability of

[] High Performance RW: Random Writes SW: Sequential Writes write operations.

Functional Techniques Non-Functional

Joins

Sorting

Read Latency

Filter Queries

Query Processing

Full-text Search Global Secondary Indexing

Local Secondary Indexing
Query Planning

Analytics Framework

Aggregation and Analytics Materialized Views

Query Processing Techniques
Summary

Local Secondary Indexing: Fast writes, scatter-gather
queries

Global Secondary Indexing: Slow or inconsistent writes,
fast queries

(Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and B-joins in RethinkDB)

Analytics Frameworks: fallback for missing query
capabilities
Materialized Views: similar to global indexing

Summary . I

High-Level Database Categories:

» Relational, Key-Value, Wide-Column, Document, Graph
» Two out of {Consistent, Available, Partition Tolerant}

The (No)SQL Toolbox: systems use similar techniques
that promote certain capabilities

Functional
>- .
promote EEL Requirements

Techniques

Sharding, Replication,
Storage Management,
Query Processing

"(.

Non-functional

Requirements

Decision Tree: maps requirements to concrete systems

- 2 0 a0, 4
5 :lllllt /

TRIGGERS & MORE

Active Database Features

Databases are Passive
Challenge: How to Build Reactive Applications?

Are there new

circles? D A@
A O

circular shapes -

Databases are Passive
Challenge: How to Build Reactive Applications?

LIAO
AO

circular shapes -

Change discovery through periodic polling
- Inefficient
- Slow

Active Database Features
Modeling Behavioral Domain Aspects

Triggers: simple action-mechanisms
Use cases:
* (Referential) integrity
* Change data capture

ECA rules: Event-Condition-Action
== Captures composite events

More expressive than triggers

(rule languages)

Advanced use cases:

- Materialized view maintenance

* Pattern recognition

* (complex) event processing

==

View Maintenance

Keeping Track of Query Results

Materialized Views: precomputed query results

Used to speed up pull-based queries, e.g in data
warehouses

Implementation aspects:

- Eager vs. lazy

* Incremental vs. recomputation-based

- Partial maintenance vs. full maintenance

+ Self-maintainability vs. expressiveness

Change Notification Mechanisms: inform subscribers

() of possibly invalidated query results
Used to invalidate caches in the middle tier (cf. 3-tier stack)

View Maintenance By Example
Matching Every Query Against Every Update

Similar processing for:

Triggers
ECA rules

- Potential bottlenecks:

Number of queries/triggers/rules
Write throughput
Complexity

-

1%

——— LSS
Is match?

& %

Was match? Was match?

& I

R % & ?
® (+) (%)

change add remove none

Push-Based Access For Evolving Domains

Continuous Queries Over Data Streams

Find people in Room B:

SELECT name, X, y
FROM People
WHERE x BETWEEN © AND 25
AND y BETWEEN © AND 15
ORDER BY name ASC

15 9 o)
A 10 ® B
5 |Y ® (:
X LA

Data Stream Management Systems
High-Level Architecture

archive
stream query (offline)
processor

. 3

working memory database

Typical Stream Operators

Examples
Filter & Transform Group
ohes _, """ _ smen He
=:= [:'IA - ITXX
Filter Map ee GroupByKey eo e
Aggregates Windows

®
COUNTY()

https://www.infog.com/presentati

| >
Tumbling

e e >

Sliding

https://www.infog.com/presentation

ons/stream-processors-databases

s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processors-databases
https://www.infoq.com/presentations/stream-processing-apache-flink

s

Complex Event Processing
Detecting Patterns

Abstraction from raw event streams

Detection of relationships between events
Often modeled in abstraction hierarchies

Techniques:
. . . complex events
Transformation, filtering o - > o >
Correlation, aggregation, ... m <O na
Pattern detection S i / \
: £ | low-level events
—> composite events | R IR bl S e
Yo Lo P Y0 TS X) e
S Radab Y t o ke et

Illustration taken from: Bruns, R. & Dunkel, J, Complex Event Processing: Komplexe
Analyse von massiven Datenstrémen mit CEP (2015). Springer Vieweg, 2015

event patterns

Notions of Time
Arrival Time vs. Event Time

Arrival time: When was the event received?
Event time: When did the event occur?

Clock Skew: difference between arrival and event time

((A)) ETT——— processing time
14 13 12 11 10

9 8 7 é 5 4 3 2 1

1012 6 091537 2113 1

! l data stream
- event time
©

m [llustration take from: Stephan Ewen, How Apache Flink™ Enables New Streaming Applications, Part 1 (2015)
https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1 (2018-03-16)

https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1

Approximation & Load Shedding
Provide the , Best” Answer While Avoiding to Fall Behind

Prohibitive!

raw stream A A

Approximation & Load Shedding
Provide the , Best” Answer While Avoiding to Fall Behind

Sampling: can be optimized for different things, e.g.
Position stream (e.g. ,select every 10th item®)
Value (e.g. hash partitioning)
Semantic criteria

raw stream A A

A O @ W Q

Summary

Database

Stream

Update rate

Low

High, bursty

Primitive Persistent collections Transient streams
Temporal scope Historical Windowed
Access random sequential
Queries One-time Continuous
Query Plans Static Dynamic
Precision Accurate Approximate

Outline

Big Picture:
* Processing Pipelines
e Stream vs. Batch

. Lambda vs. Kappa
Q4 Stream Processing Architecture

o Big Data + Low Latency

Introduction

System Survey:
 Storm/Trident

Real-Time Databases * Samza
e Spark Streaming
* Flink
. . * Discussion:
-9 Future Directions . Comparison Matrix

e Other Systems

OVERVIEW

Scalable Data
Processing

A Data Processing Pipeline

We are here!

Persistence/
1/\O) Streaming I_Processing | Serving Application

Data Processing Frameworks

Scale-Out Made Feasible

Data processing frameworks hide complexities of scaling, e.g.:
* Deployment - code distribution, starting/stopping work

* Monitoring - health checks, application stats

e Scheduling - assigning work, rebalancing

* Fault-tolerance - restarting workers, rescheduling failed work

Running on single node
[=1

Scaling out

o7 |

Running in cluster

I =1
o |
[-1
o |
I -1
o |

13 | &1
d1
121 1241
o1
130 1%
¢

Big Data Processing Frameworks
What are your options?

Spoflzz Ggogle Dataflow B) Heron

Streamin " L
9 ' Spoﬁh(z

5 sTorRM |'. Amazon Elastic

IBM InfoSphere
MapReduce

5D sToRM Streams
Trident

a Flink @ §8 kafka streams

C, concord

Big Data Processing Frameworks
What are your options?

SPCMiZ N . @ HHHHH

Streaming Ty .E L spoﬁ'g
S
/ X Elast
What.to use when?
STO :
Tride
%
é Flink §§ kafka streams

c concord

Big Data Processing Frameworks

What are your options?
@STORM @HERON

> r
o Y
2 c concord Flinte
Q _
-l-J e o, "
LU IBM InfoSphere i g
; Streams
O =
Spc:rr"lzZ
Streamin
Fo)) :ﬂggm §§ kafka streams m J

_ Amazon Elastic a7
MapReduce Spark

ClhErbED

high throughput

CONCEPTS

Batch vs. Stream
Processing

Batch Processing
Volume”

e Cost-effective & Efficient

» Easy to reason about: operating on complete data
But:

* High latency: periodic jobs (e.g. during night times)

> =P = <= [

Persistence Batch Serving

Application
(e.g. HDFS) (e.g. MapReduce) (e.g. HBase) PP

Stream Processing
\elocity“

Low end-to-end latency
Challenges:

Long-running jobs - no downtime allowed
Asynchronism - data may arrive delayed or out-of-order
Incomplete input - algorithms operate on partial data
More: fault-tolerance, state management, guarantees, ...

=)= &3 = <o | il

Streaming Real-Time

Servin Application
(e.g. Kafka, Redis) (e.g. Storm) g Pp

Lambda Architecture
Batch(D, 4) + Stream(D,) = Batch(D,,)

e Fast output (real-time)

» Data retention + reprocessing (batch)
— ,eventually accurate” merged views of real-time & batch
Typical setups: Hadoop + Storm (= Summingbird), Spark, Flink

* High complexity 2 code bases & 2 deployments

o,
’ ReaI-Time\
g R

Streaming Persistence Batch Serving Application

(e.g. Kafka, Redis)

m Nathan Marz, How to beat the CAP theorem (2011)
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Kappa Architecture
Stream(D,,) = Batch(D,,)

« Simpler than Lambda Architecture

e Data retention for history

* Reasons against Kappa:
* Existing legacy batch system
» Special tools only for a particular batch processor
* Only incremental algorithms

Q o> &3 <o [il]

Streaming + re.tent.lon Real-Time Serving Application
(e.g. Kafka, Kinesis)

m Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

. Y]
(> » Q))
Wrap-up ;/f—q‘
Data Processing Pad @ -

e Processing frameworks abstract from scaling issues

& &

Batch processing Stream processing

* easy to reason about e quick results

e extremely efficient e purely incremental

* huge input-output e potentially complex to
latency handle

* Lambda Architecture: batch + stream processing
» Kappa Architecture: stream-only processing

SURVEY

Popular Stream
Processing Systems

Processing Models
Batch vs. Micro-Batch vs. Stream

stream micro-batch batch
éFlink
25 STORM 55 STORM Sporiz spoﬁ(\z

Trident Streaming

m @ »s Amazon Elastic

MapReduce

T --->

low latency high throughput

Storm) STORM

,Hadoop of real-time“

Overview
First production-ready, well-adopted stream processor
Compatible: native Java API, Thrift, distributed RPC
Low-level: no primitives for joins or aggregations
Native stream processor: latency < 50 ms feasible
Big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, ...
History
2010: developed at BackType (acquired by Twitter)

2011: open-sourced
2014: Apache top-level project

Dataflow

Directed Acyclic Graphs (DAG):

Spouts: pull data into topology

Bolts: do processing, emit data
Asynchronous

Lineage can be tracked for each tuple
— At-least-once has 2x messaging
overhead

/} STORM

streaming

T T I
= =)

: \
serving |

Cluster Architecture 5% STORM

How Storm Scales

Submit
Topology
Zookeeper
Nimbus p
. J
4 _ A 4 _ A
Supervisor Supervisor
L Vorker | Worker I L orker | worker

Storm Slave Storm Slave

Cluster Architecture 5% STORM

How Storm Scales

Scheduling &
Monitoring
Submit
Topology Handles
coordlnatlon
Zookeeper
Nimbus p
/ L
4 _ A 4
Supervisor Superwsor IVM for each
Worker
worker (runs
\) \

spouts and
Storm Slave Storm Slave bolts as tasks)

State Management Y STORM

Recover State on Failure

* In-memory or Redis-backed reliable state
* Synchronous state communication on the critical path
— infeasible for large state

I serving

Back Pressure Y cTORM
Throttling Ingestion on Overload

1. too many 2. tuples time
tuples > out and fail

3. tuples get
replayed

Approach: monitoring bolts’ inbound buffer
1. Exceeding high watermark — throttle!
2. Falling below low watermark — full power!

Trident

Stateful Stream Joining on Storm

Overview:
Abstraction layer on top of Storm
Released in 2012 (Storm 0.8.0)
Micro-batching
New features:
* High-level API: aggregations & joins
- Strong ordering
- Stateful exactly-once processing

- Performance penalty

5 STORM

Trident

Trident

Partitioned Micro-Batching

3 Parti- /

Spout

Trident stream

Operation

Batch 1

Trident stream

Batch 2

El-u [namez"value"]l

i|-u [name="va1ue"]|

u_l [name="value"] |

tions

L I-u [name="value"] |

|-u [name="va1ue"]|

u_l [name="value"] |

1
1
1
1
I—u [name="value"

]

|-u [name="va1ue"]|

u_l [name="value"] |

| —

[~

Illustration taken from: “Storm

applied”, Sean T. Allen et al.

3 Batches

STORM
Trident

Partition 1
Partition 2

Partition 3

s

Real-Time on Top of Kafka
Overview 15t Recora ek
Co-developed with Kafka l l

— Kappa Architecture
Simple: only single-step jobs
Local state

i
ﬂiEﬂ-iEE?BQ‘IEIHIEE

Native stream processor: low latency
Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, ...

History
Developed at LinkedIn

2013: open-source (Apache Incubator)
2015: Apache top-level project

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-02)

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Dataflow

Simple By Design
* Job: processing step (= Storm bolt) ———T—-—-——iKﬁ—l-Qi———l———-
— Robust Seamza job Semza job
— But: often several jobs [] []
* Task: job instance (parallelism) v v
« Message: single data item e _Kafka
* Qutput persisted in Kafka Saniajob
— Easy data sharing [Y]
— Buffering (no back pressurel) I
— But: Increased latency Kafka

* Ordering within partitions
* Task = Kafka partitions: not-elastic on purpose

m Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23)

https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

Samza
Local State

Advantages of local state:

X || : tear'n'Poce n Jb
Stream Processing Job | | Str rocessing Jo!

» Buffering R ik el QL QLo
— No back pressure £

: £
—> At-least-once delivery Quput Crargio
5 EHB

— Simple recovery
* Fast lookups

m Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

Dataflow
Example: Enriching a Clickstream

Frontend
Application Database
\ User Account

Clicks

Updates
Example: the enriched \/
clickstream is available to Stream
e Processing
every team within the Job
L |
organ 1Ization Enriched Clicks

v
=

Output
Stream

m Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing

State Management
Straightforward Recovery

Stream A

Restores consistent
state by consuming
from its changelog
partition

i

l Restored F—
l H H
[

L

Task 1 E Task 2 @

Stream B Changelog Stream

m Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing (2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26)

https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing

Spark I
,MapReduce successor” Spr K
Overview

High-level API: immutable collections (RDDs)

Streaming

Community: 1000+ contributors in 2015
Big users: Amazon, eBay, Yahoo!, IBM, Baidu, ...

History
2009: developed at UC Berkeley

2010: open-sourced
2014: Apache top-level project

Spark Streaming spaik’

Streaming

Overview
High-level API: DStreams (~Java 8 Streams)
Micro-Batching: seconds of latency
Rich features: stateful, exactly-once, elastic

History
2011: start of development
2013: Spark Streaming becomes part of Spark Core

Spark Streaming Soark’

Core Abstraction: DStream Streaming

Resilient Distributed Data set (RDD)
Immutable collection & deterministic operations

Lineage tracking:
— state can be reproduced
— periodic checkpoints reduce recovery time

DStream: Discretized RDD
RDDs are processed in order: no ordering within RDD
RDD scheduling ~50 ms — latency >100ms

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Illustration taken from:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

Example soark’

Counting Page Views Streaming

EpageViews = preadStream("http://...", "1ls")
~ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

pageViews ones counts
DStream DStream DStream

interval
[0, 1)

map reduce

interval
[1,2)

Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

Flink

Overview

Native stream processor: Latency <100ms feasible

Abstract API for stream and batch processing, stateful, exactly-
once delivery

Many libraries: Table and SQL, CEP, Machine Learning , Gelly...
Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando...
History

2010: start as Stratosphere at TU Berlin, HU Berlin, and HP!
Potsdam

2014: Apache Incubator, project renamed to Flink
2015: Apache top-level project

Architecture
Streaming + Batch Flink

& .
O =

DataStream (Java / Scala) DataSet (Java/Scala)

Streaming dataflow runtime

Table
Hadoop M/R
Table

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processing-apache-flink

Managed State

Streaming + Batch

Flink

Automatic Backups of local state
Stored in RocksDB, Savepoints written to HDFS

Web g Operator with windows
server (large state)

Periodic backup /
State recovery
backend

Distributed

File System

Stream processor: Flink

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processing-apache-flink

Highlight: Fault Tolerance
Distributed Snapshots

data stream

Do Flink

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
l J \ J \ J
Y Y Y
part of part of part of
checkpoint n+1 checkpoint n checkpoint n-1

* Ordering within stream partitions
* Periodic checkpoints

—pExactly-once
* Recovery:
1. reset state to checkpoint
2' l’ep/ay data from there m Iriltl’::tsrj’;ic?.r;;?((:ir;.f;::/];)roiects/flink/flink-docs-release-

1.2/internals/stream checkpointing.html| (2017-02-26)

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream_checkpointing.html

WRAP UP
Side-by-side
comparison

Comparison

Strictest
Guarantee

Achievable
Latency

State
Management

Processing
Model

Backpressure

Ordering

Elasticity

Storm

at-least-
once

<100 ms

(small state)

one-at-a-
time

v

x
v

Trident

exactly-
once

<100 ms

(small state)

micro-batch

v

between
batches

v

Spark
Samza P)
Streaming
at-least-
exactly-once
once
<100 ms <1 second

v v

one-at-a- .
. micro-batch
time
no
(buffering) ‘/
within between
partitions batches

% v

Flink
(streaming)

exactly-once

<100 ms

v

one-at-a-
time

within
partitions

X

Performance
Yahoo! Benchmark

Based on real use case:
Filter and count ad impressions
10 minute windows

“Storm [...] and Flink [...] show sub-second latencies at
relatively high throughputs with Storm having the lowest
99th percentile latency. Spark streaming [...] supports high
throughputs, but at a relatively higher latency.”

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

Other Systems

Heron Apex Dataflow
(™ ” R
w APEX
Kafka IBM InfoSphere
Beam
Streams Streams

3 i &3

And even more: Kinesis, Gearpump, MillWheel, Muppet,
S4, Photon, ...

Summary

Stream Processors:

5% STORM épnnk m Spoflf(? Streaming

(—é_é—é—é—)

latency throughput

Many Dimensions of Interest: consistency guarantees,
state management, backpressure, ordering, elasticity, ...

Outline

Introduction
Stream Processing

Real-Time Databases
Push-Based Collections

Future Directions

%ﬂ:
=
e %

Big Picture:

Why Push-Based
Database Queries?
Where Do Real-Time
Databases Fit in?

System Survey:

Meteor
RethinkDB
Parse
Firebase

Discussion:

Comparison Matrix
Other Systems

VE Y My e o

TR 0 1 e o

REAL-TIME DBS

Making Databases

Push-Based

Traditional Database Access
No Request? No Datal

What's the
current state?

circular shapes ?

Query maintenance: periodic polling
- Inefficient
- Slow

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

METE \\R
4) RethinkDB

@ Parse

7”7 Firebase

Database Real-Time Data Stream Stream
Management Databases Management Processing

, _ , , persistent/ ephemeral
static collections evolving collections
ephemeral streams streams

D N S W

pull-based push-based

—

System Survey /7 &
, |

Meteor MET ER\\R

Overview:

JavaScript Framework for interactive apps and websites

* MongoDB under the hood

* Real-time result updates, full MongoDB expressiveness

Open-source: MIT license

Managed service: Galaxy (Platform-as-a-Service)
History:

2011: Skybreak is announced

2012: Skybreak is renamed to Meteor

2015: Managed hosting service Galaxy is announced

Live Queries

N
Poll-and-Diff MET Ex\ R

* Change monitoring: app servers detect relevant changes
— incomplete in multi-server deployment

» Poll-and-diff: queries are re-executed periodically
— staleness window
— does not scale with queries

> ;I ‘
repeat query every 10 seconds
forward
monitor g — — - — o ¢ RUD _____
mcommg 1 /
writes METE\\\R | METE\\R !

I app server ' I app server |
A S A /

Oplog Tailing METE\\R

Basics: MongoDB Replication

* Oplog: rolling record of data modifications D

* Master-slave replication:

Secondaries subscribe to oplog write operation

.mongo cluster
(3 shards)

3 apply

propagate change

Secondary C1 Secondary C2 Secondary C3

Oplog Tailing METE\\R
Tapping into the Oplog

* FEvery Meteor server receives
all DB writes through oplogs .mongo cluster (3 shards)

anaryA Primary B PrlmaryC

(I
| I
1 I
| I
1 I
\

query ~——
D (whenin doubt)<
: . monitor ~ \ .
| | oplog O‘ '
METE\R | METE\\R |
D (\ﬂSh relevant events o I\ App server I '\ App server /I
| / \ CRUD /'\

Oplog Tailing METE\\R

Oplog Info is Incomplete

What game does Bobby play?

— if baccarat, he takes first place!
— if something else, nothing changes!

Partial update from oplog:
{ name: ,Bobby"“, score: 500 }

Baccarat players sorted by high-score

ﬁ«fe'f E\R)

{ name: ,Joy"“, game: ,baccarat"“, score: 100 }
I 2. { name: ,Tim“, game: ,baccarat™, score: 90 }
I 3. { name: ,Lee"“, game: ,baccarat"“, score: 80 }

Oplog Tailing METE\\R
Tapping into the Oplog

* FEvery Meteor server receives
all DB writes through oplogs .mongo cluster (3 shards)

- does not scale “Primary A Primary B Primary C*

(
I
I
I
I
\

query ~—=—
(whenin doubt)<
D monitor -~ \ .
oplog '
METE\R | METE\R I
D (\push relevant events o I\ App Ser r I ' App server '

Bottleneck!

RethinkDB ¢)RethinkDB

Overview:
,MongoDB done right“: comparable queries and data model, but also:
- Push-based queries (filters only)
* Joins (non-streaming)
* Strong consistency: linearizability
JavaScript SDK (Horizon): open-source, as managed service
Open-source: Apache 2.0 license
History:
2009: RethinkDB is founded
2012: RethinkDB is open-sourced under AGPL
2016, May: first official release of Horizon (JavaScript SDK)
2016, October: RethinkDB announces shutdown
2017: RethinkDB is relicensed under Apache 2.0

RethinkDB

 Range-sharded data
e RethinkDB proxy: support node
without data
e Client communication
* Request routing
e Real-time query matching

-—ees e e . -

» FEvery proxy receives
all database writes
— does not scale

App server App server

m William Stein, RethinkDB versus PostgreSQL: my personal experience (2017) B 0 ttle ne Ck |

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

m Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

- e s o e

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Parse @ Parse

Overview:
Backend-as-a-Service for mobile apps
* MongoDB: largest deployment world-wide
* Easy development: great docs, push notifications, authentication, ...
* Real-time updates for most MongoDB queries
Open-source: BSD license
Managed service: discontinued
History:
2011: Parse is founded
2013: Parse is acquired by Facebook
2015: more than 500,000 mobile apps reported on Parse
2016, January: Parse shutdown is announced
2016, March: Live Queries are announced
2017: Parse shutdown is finalized

Parse @
LiveQuery Architecture Parse

* LiveQuery Server: no data, real-time query matching
* Every LiveQuery Server receives

all database writes

% does not Scale Parse LiveQuery Server

Event .
LiveQuery Subscribe Message Client
Message
[
Parse Server o

ParseObject
Update Message WebSockerServer |<

. . Subscriber i
. ParseObject ParseObije: Subscribe '
Publisher N Update Update Message Client
Parse Server > Rediy Parse LiveQuery Server

Event X
Client
Publisher q & Subscriber V
ParseObject Subscribe
Update Message WebSockerServer
L4
. Event
HeQuen Message Subscribe cront
Message

Bottleneck!

[llustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Firebase Firebase

Overview:

Real-time state synchronization across devices

Simplistic data model: nested hierarchy of lists and objects

Simplistic queries: mostly navigation/filtering

Fully managed, proprietary

App SDK for App development, mobile-first

Google services integration: analytics, hosting, authorization, ...
History:

2011: chat service startup Envolve is founded

— was often used for cross-device state synchronization
— state synchronization is separated (Firebase)

2012: Firebase is founded
2013: Firebase is acquired by Google
2017, October: Firestore is released

Firebase .
. o ¥ Firebase
Real-Time State Synchronization

* Tree data model: application state ~JSON object
« Subtree synching: push notifications for specific keys only

— Flat structure for fine granularity

— Limited expressiveness! / @

O 10¢

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase
Query Processing in the Client

* Push notifications for specific keys only
* Order by a single attribute
* Apply a single filter on that attribute

* Non-trivial query processing in client
— does not scale!

“chat!l

“message_1

” Firebase

“message_2"

s name: “Frank”

——— message: “Hello. Anyone here?”

p— name; “Jeff”

m Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

— message: “Sorry, working on some AI”

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Firebase
Hard Scaling Limits

Firebase

“Scale to around 100,000 concurrent connections
and 1,000 writes/second in a single database.
Scaling beyond that requires sharding your data
across multiple databases.”

Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018)
https://firebase.google.com/docs/database/rtdb-vs-firestore (2018-03-10)

https://firebase.google.com/docs/database/rtdb-vs-firestore

Firebase

Firestore: New Model
documents

q/ references

” Firebase

collections

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: New Model

Y Firebase

finer access granulates ,

on . N

tree-like structure

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: Summary

Firebase

 More specific data selection
* Logical AND for some filter combinations

... But:
 Still Limited Expressiveness
* No logical OR

* No logical AND for many filter combinations

* No content-based search (regex, full-text search)
 Still Limited Write Throughput:

* 500 writes/s per collection

e 1 writes/s per document

m Firebase, Firestore: Quotas and Limits (2018)
https://firebase.google.com/docs/firestore/quotas (2018-03-10)

https://firebase.google.com/docs/firestore/quotas

Honorable Mentions
Other Systems With Real-Time Features

(9 GRAPHCOOL

rapid.io
~OrientDB
y

ms elasticsearch

— ‘ mongo

&« realm

REAL-TIME DBS

Summary & Discussion

Az
Wrap-Up % ol

Direct Comparison

%

o c©
. &9 o ’&(c,e (@
QO ¢ W

\'\?’« Q\?@’w

Meteor RethinkDB Parse Firebase Bagend

Poll-and-Diff Oplog Tailing
X v

Scales with no.

write TP
of queries (100k connections)

Scales with ‘/ % %
v ?
v

Composite

queries (AND/OR) (AND In Firestore)

Sorted queries
(single attribute)

v

Limit

NN XN N %
NN XN XS
NN I NIEN ENES

Offset

(value-based)

Summary J@(¥
Real-Time Databases: Major challenges Ead 2

fﬁl_ Scalability:

» Handle increasing throughput
» Handle additional queries

q@ Expressiveness:
» Content-based search? Composite filters?
» Ordering? Limit? Offset?

c@ Legacy Support:

» Real-time queries for existing databases?
» Decouple OLTP from real-time workloads?

Outline

Introduction

o

% Stream Processing
Real-Time Databases

-:9’- Future Directions
= Current Research & Outlook

Caching Dynamic Data:
* Why is the Web Slow?
* Caching to the Rescue!
* Query Caching
Real-Time Queries:
e Scalability
* Expressiveness
* Legacy Compatibility
* Use Cases
Open Challenges:
* TTLs & Transactions
e Polyglot Persistence
Summary

B.EaEEl L F
OUTLOOK

Our Research at the
University of Hamburg

b .
= . = P —
kS

ree,
ol =

R

Problem: Slow Websites
Two Bottlenecks: Latency and Processing

" _High
Latency

Processing Overhead |

._ {'9

W S - A

Solution: Global Caching
Fresh Data From Distributed Web Caches

IOW atency - \Q{Q \3 —&

New Caching Algorithms

Solve Consistency Problem

Consistent Web Caching
The Cache Sketch

Browse
Cache

CDN

Consistent Web Caching

The Cache Sketch

Browse
Cache

nnnnn

CDN

Consistent Web Caching
The Cache Sketch

Browse
Cache

CDN

Consistent Web Caching
The Cache Sketch

purge(obj)

Browse
Cache

CDN

A
I\

hashA(oid) / Y\ hashB(oid)
\

\
\

\
h |
1

!
!
!
4
3

114

Consistent Web Caching

The Cache Sketch

Browse
Cache

CDN

Flat(Counting Bloomfilter)

Consistent Web Caching
The Cache Sketch

Browse
Cache

CDN

hashA(oid) \\hashB(oid)

I
ll \
' \
; \

1

Consistent Web Caching

The Cache Sketch

Browse
Cache

CDN

1\
hashA(oid) 7 \\hashB(oid)
1

\
ll ‘\
I \
1111111

Consistent Web Caching

The Cache Sketch

Browse
Cache

CDN

Consistent Web Caching
The Cache Sketch

Browse
Cache

CDN

1\
hashA(oid) / Y\ hashB(oid)
\

\
\

\
<
0

!
!
!
| 4
2

114

Consistent Web Caching
The Cache Sketch =

Wirtschaft

hashA(oid) / Y\ hashB(oid)
\

\
\

\
<
0

!
1
1
| 2
2

114

nvali
‘E

RESEARCH
How to Invalidate DB
Query Results?

InvaliDB

Invalidating DB Queries

How to detect changes to |

query results:

,,Give me the most popular
products that are in stock.”

g

$10.25-$179.99 $97.99

Ends in 16:45:48 List: $449-95 (35% off)

Up to 50% Off Handbags Ends in 16:45:48

ey 21 Save on Hitachi Gas Powered Leaf
Blower
Ships from and sold by Amazon.com.
e e ke e ol 1961

l See details | [Add o Cart

w
)

$15.63 - $16.79

9% Claimed Ends in 4:40:49
BESTEK surge protector
Sold by BESTEK. and Fulfiled by Amazon.

o el 162

Choose options I

$18.66
Price: $39-99 (53% off)

18% Claimed Ends in 3:05:49
AUKEY Table Lamp. Touch Sensor
Bedside Lamp + Dimmable War.
Sold by Aukey Direct and Fulfiled by
Amazon.

e e e 57 669

l Add to Cart

InvaliDB =
Invalidating DB Queries Real-Time

Queries
(Websockets) [

Create Fresh Caches
- . .
Update = B B
Delete
Server

Pub-Sub ARz

Bagend Real-Time Queries
Realtime Decoupled

9
> 1@

BaQend

App Server

=

Bagend Real-Time Queries
Realtime Decoupled

9
> 1@

BaQend

App Server

=

Bagend Real-Time Queries
Realtime Decoupled

Y9
\/\0) 1"/\0)
BaQend —
Appgerver 'L'T’g
nvali =

S g
“=0DB

Keeps data up-to-date!

Bagend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through different
query processing stages:

I
1
1. Filter queries: track matching status : Filtering
— before- and after-images [< Evint! ! %;]
2. Sorted queries: maintain result order ! _
3. Joins: combine maintained results ! Ord(zr'ng
4. Aggregations: maintain aggregations [< Evj‘“ | l:]
| Joins
[< Event! : \/]
\ | !
VvAggregation
[<« Ev$1t! Z]

Bagend Real-Time Queries
Filter Queries: Distributed Query Matching

SELECT * FROM posts WHERE tags CONTAINS 'NoSQL'

Two-dimensional partitioning: l

° by CZuery m (Query | (quey | [Query)
S Part.1 Part. 2 Part. 3

* by Object E 7

: . .) B | ° A

— scales with queries and writes 2 |3+
e} 19 ™
.-E/ ©= W

|mp|ementatlon W“te Op ‘4%.0 N WasMa;Ech? WasMa/Lch?

* Apache Storm | 5

change add remove %
* Topology in Java -

e MongoDB query language
* Pluggable query engine

Object‘L\ (Object)
Part. 3

- legacy-compatible ¢

Bagend Real-Time Queries
Low Latency + Linear Scalability

Linear Scalability Stable Latency Distribution

80M

@9 99th Pe;centile Latency‘ < 25ms Frequency
l I 99th Percentile Latency < 20 ms %
40M || ¢ # 99th Percentile Latency =< 15ms| ol 271 0.15 i N 1 node (3M ops/s)
= T Tt i 16 nodes (48M ops/s)
O Z20MP 2 e Tt |
3 ' 0.10}
Q_ L
c
2 10M|
o -] J
-|E L7 ".“ : : 0-05 B : I-"l
5M| .~ ,’ SO OO URUOR ST I w -
A | | S
2.5M 2 4 g 16 5 10 15 20 25 30
Matching Nodes Latency

m Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17

Programming Real-Time Queries

JavaScript API

vaP query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt’)
.offset(20)
.1imit(10);

Twoogle Twoogle

Filter word, e.g. "http", "Java", "Bagend” n Filter word, e.g. "http”, "Java’, "Bagend” n

Real-Time Static Real-Time Static

Last result update at 15:51:21 (less than a second ago) Last result update at 15:51:21 (less than a second ago)
1. Conju.re (conju_re, 3840 followers) tweeted: 1. Conju.re (conju_re, 3840 followers) tweeted:
https://twitter.com/conju_re/status/859767327570702336 https:/twitter.com/conju_re/status/859767327570702336
Congress Saved the Science Budget—And That's the Problem https://t.co/UdrjNidakc Congress Saved the Science Budget—And That’s the Problem
https://t.co/xINjpEpKZG https://t.co/UdrjNidakc https://t.co/xINjpEpKZG
2. 2l d 17 —7Z L (Yuuu__key, 229 followers) tweeted: 2. #AalEd 17w —7ZL (Yuuu__key, 229 followers) tweeted:
https://twitter.com/Yuuu___key/status/859767323384623104 https://twitter.com/Yuuu___key/status/859767323384623104

[JW& E A & PENGUIN RESEARCH®D IF W< A A 7D Y LT3.. [FW&E Z A & PENGUIN RESEARCH®D |FWWo< A A 7D)ERY LTS..

s

3. Whitney Shackley (bschneids11, 5 followers) tweeted: 3. Whitney Shackley (bschneids11, 5 followers) tweeted:
https://twitter.com/bschneids11/status/859767319534469122 https://twitter.com/bschneids11/status/859767319534469122

holy...... waiting for it so long@® © https://t.co/UdXcHJb7X3 holy...... waiting for it so long@® @ https://t.co/UdXcHJb7X3

4. Lisa Schmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and #scs... 4. Lisa Schmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and...
https://twitter.com/LisaMSchmid/status/859767317311500290 https://twitter.com/LisaMSchmid/status/859767317311500290

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge. Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge.
https://t.co/vx100WgJrZ #SCSchallenge https://t.co/vx100WgJrZ #SCSchallenge

5. Brian Martin Larson (Brian_Larson, 40 followers) tweeted on #teamscs, a... 5. Brian Martin Larson (Brian_Larson, 40 followers) tweeted on #teams...
https://twitter.com/Brian_Larson/status/859767317303001089 https://twitter.com/Brian_Larson/status/859767317303001089

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge. Congrats to Matthew Kent, winner of the26th #TeamSCS Coding Challenge.

Bagend
Try It Out!

Platform

— Platform for building
(Progressive) Web Apps

—15x Performance Edge
— Faster Development

—Turns Existing Sites
into PWAs

—50-300% Faster Loads
— Offline Mode

Speed Kit

Accelerate Your Website!

https://www.alibaba.com/

Your Website 2.3% With Speed Kit
3514ms Faster 1543ms

With Speed Kit Your Website

1.5s 3.5s

Excellent

Show Details

https://test.speed-kit.com/

Speed Kit
Bagend Caching for Legacy Websites

Website
3rd Party . ;ﬁ _Existing
BB B Services ‘I Backend

Speed Kit
Bagend Caching for Legacy Websites

Website with Speed Kit Bagend
Snippet Service Worker Service

l Fast Requests m

3rd Party : ;ﬁ _Existing
s BB Services Backend

—

Requests

FUTURE DIRECTIONS

Open Challenges

“ “H HH \HHHHIHH!H'THHH i HIHhH HHHHHH- 5t

wmn \;,m@» umgmmmw"mmnu -,u,;m-u;puu m”m”u.

| ‘,

LI ' {

TTL Estimation
Quantifying Cacheability of Dynamic Content

Setting: server assigns a caching time-to-live (TTL) to
each record and query result

Problem:

e TTLs too short: Bad cache-hit rate
TTLs too large: Bloom filter‘s false positive rate degrades

Approach: Collect access metrics and estimate

Objects: calculate the expected value of the time to next write (assuming
a poisson process)

,# Queries:
- Initial estimate: estimated time until first object in result is updated

- Refinement: upon invalidation TTL is adapted towards observed TTL
using an EWMA

TTL Estimation

Learning Representations

Setting: query results can either be represented as
references (id-list) or full results (object-lists)

Id-Lists Object-Lists
{idy,id,,id3)} {{id:1,val:"a'},{id: 2,val:'b"},
{id: 3,val:'c'}}
Less Invalidations Less Round-Trips

Current Approach: Cost-based decision model that
weighs expected round-trips vs expected invalidations

Desired: Adaptive agent that actively explores decisions

TTL Estimation U

(a) Growing Pattern (b) On/Off Pattern

Open Challenge: Learning Workloads _/\ o ey

(¢) Bursty Pattern (d) Random Pattern

,Backwards-oriented (current approach):
* Mesure & use moving average or newest measurement
* Cannot react to spikes/fluctuation nor detect patterns

»Predictive online-learning”:

- Extrapolate using regression (e.g. linear or polynomial) or
time-series models (Exponential Smoothing, AR, ARIMA,
Gaussian Processes, ...)

* Resource intensive, very difficult to select & evalute model

Q ,Reactive”:

- Use Reinforcement learning to automatically explore
decisions

- Rewards usually noisy, delayed or hidden (e.g. staleness)

Polyglot Persistence Mediator
Schemas can be annotated with requirements/SLAs

Write Throughput > 10,000 RPS |

- Read Availability > 99.9999%

- Scans = true T
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

((C

Polyglot Persistence Mediator
Routing to the ,,optima

Application

Database 4 e Polyglot Persistence
Metrics T, -». Mediator

datbase system

Data and
Operations

& Routing
,,,, Model

Recursive Ranking Algorithm
for schemaElemt 2 DB mapping

Annotated
Schema

Latency < 30ms

Polyglot Persistence
Open Challenges

_
e

Meta-DBaaS: Mediate over DBaaS-systems unify SLAs

Live Migration: adapt to changing requirements

Database Selection: Actively minimize SLA violations

Utility Functions/SLAs: Capture trade-offs comprehensively

Workload Management: Adaptive Runtime Scheduling

Distributed Transactions

Q Transaction Abort Rates: How to mitigate high abort
rates caused by long running transactions?

Automatic Transaction Protocol Selection: Can the
optimal protocol (2PL, BOCC+, RAMP, ...) be learned
and chosen at runtime?

Transactional Visibility For Real-Time Queries: How to
include transactions without introducing bottlenecks?

"«

CLOSING TIME

Summary

Summary
Real-Time Data Management

T->

pull-based push-based
Database Real-Time | Data Stream | Stream
Management | Databases | Management | Processing
Data persistent collections persistent/ephemeral streams
. : one-time + :
Processing one-time . continuous
continuous
random + .
Access random . sequential
sequential
structured
Schema structured ’
unstructured

Summary
Real-Time Data Management

Database Real-Time Data Stream Stream
Management Databases Management Processing
static evolving structured unstructured

collections collections streams streams

oo 4 o,

pull-based push-based

NoSQL Databases: a Survey and Decision Guidance

Together with our colleagues at the University of Hamburg, we—that is Felix Gessert,
Wolfram Wingerath, Steffen Friedrich and Norbert Ritter—presented an overview over
the NoSQL landscape at SummerSOC’16 last month. Here is the written gist. We give
our best to convey the condensed NoSQL knowledge we gathered building Bagend.

NoSQL Databases:

A Survey and Decision Guidance

TL;DR

Today, data is generated and consumed at unprecedented scale. This has lead to novel
approaches for scalable data management subsumed under the term “NoSQL” database
systems to handle the ever-increasing data volume and request loads. However, the
heterogeneity and diversity of the numerous existing systems impede the
well-informed selection of a data store appropriate for a given application context.
Therefore, this article gives a top-down overview of the field: Instead of contrasting the
implementation specifics of individual representatives, we propose a comparative
classification model that relates functional and non-functional requirements to
techniques and algorithms employed in NoSQL databases. This NoSQL Toolbox allows
us to derive a simple decision tree to help practitioners and researchers filter potential
system candidates based on central application requirements.

Scalable Stream Processing: A Survey of Storm,
Samza, Spark and Flink

Scalable Stream Processing:
A Survey of Storm, Samza,
Spark and Flink

With this article, we would like to share our insights on real-time data processing we
gained building Bagend. This is an updated version of our most recent stream processor
survey which is another cooperation with the University of Hamburg (authors:
Wolfram Wingerath, Felix Gessert, Steffen Friedrich and Norbert Ritter). As you may or
may not have been aware of, a lot of stream processing is going on behind the curtains
at Bagend. In our quest to provide the lowest-possible latency, we have built a system to
enable query caching and real-time notifications (similar to changefeeds in
RethinkDB/Horizon) and hence learned a lot about the competition in the field of

stream processors.

Read them at blog.bagend.com!

blog.baqend.com

Our Related Publications

S C i e n t i fi C P a p e rS : A Real-Time Database Survey: The

Architecture of Meteor, RethinkDB, Parse
& Firebase

Quaestor: Query Web Caching for Database-as-a-Service Providers I ————
VLDB ‘17 tior

8

NoSQL Database Systems: A Survey and Decision Guidance
SummerSOC ‘16

o

Real-time stream processing for Big Data
it - Information Technology 58 (2016)

8

m The Case For Change Notifications in Pull-Based Databases
BTW ‘17

A Real-Time Database Survey:
The Architecture of Meteor, RethinkDB, Parse & Firebase

Blog Posts:

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Bagend Tech Blog (2017): https://medium.com/p/822ff87d2f87

Learn more at blog.bagend.com!

https://medium.com/p/822ff87d2f87
blog.baqend.com

Thank you

{wingerath, gessert, ritterj@informatik.uni-hamburg.de

Blog: blog.bagend.com
Slides: slides.bagend.com

, @bagendcom

