
Real-Time Data Management
For Big Data

Wolfram Wingerath, Felix Gessert, Norbert Ritter
{wingerath, gessert, ritter}@informatik.uni-hamburg.de

March 29, EDBT 2018, Vienna

www.baqend.com



Research:
• NoSQL & Cloud Databases
• Polyglot Persistence
• Database Benchmarking
• …

Practice: 
Backend-as-a-Service

Web Caching
Real-Time Database

…

Who We Are

Norbert Ritter
Professor

Felix Gessert
CEO

Wolfram Wingerath
Developer

+
•

•

•

•

www.baqend.com



Outline

• A Short History of 
Data Management

• Database Management:
• (No)SQL Decision Tree
• (No)SQL Toolbox
• Active Database 

Features
• Data Stream Management:

• General Architecture
• Stream Operators
• Approximation & 

Sampling
• CEP

Real-Time Databases
Push-Based Collections

Introduction
Where From? Where To?

Stream Processing
Big Data + Low Latency

Future Directions
Current Research & Outlook

∑



1970

1980

1990

2000

2010

today

Relational 
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL 
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora & 
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

Baqend

GFS

Relational Databases

Active Databases

CEP & 
Streams

Big Data & 
NoSQL

Stream 
Processing

Real-Time 
Databases

A Short History of Data Management
Hot Topics Through The Ages

Telegraph



CONCEPTS & REQUIREMENTS

The NoSQL Toolbox



http://www.baqend.com
/files/nosql-survey.pdf



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

(No)SQL Decision Tree



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

(No)SQL Decision Tree

Purpose:
Application Architects: narrowing down the potential 
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs





Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk



Sharding (aka Partitioning, Fragmentation)

Scaling Storage and Throughput

 Horizontal distribution of data over nodes

 Partitioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)

Shard 1

Shard 2

Shard 3

[G-O]

Franz

Peter



Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding
Approaches

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance 
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.



Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding
Approaches

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance 
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.

BigTable, HBase, DocumentDB
Hypertable, MongoDB, 
RethinkDB, Espresso

Implemented in

G-Store, MegaStore,
Relational Cloud, Cloud SQL 
Server 

Implemented in

MongoDB, Riak, Redis, 
Cassandra, Azure Table, 
Dynamo

Implemented in



Functional Techniques Non-Functional

ACID Transactions

Conditional or Atomic Writes
Replication

Consistency

Read Latency

Read Availability

Write Availability

Write Latency

Read Scalability

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere



 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication
Read Scalability + Failure Tolerance

DB Node

DB Node

DB Node

Özsu, M.T., Valduriez, P.: Principles of distributed database systems. 
Springer Science & Business Media (2011)



Asynchronous (lazy)
◦ Writes are acknowledged immediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates 

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Asynchronous (lazy)
◦ Writes are acknowledged immediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates 

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

BigTable, HBase, Accumulo, 
CouchBase, MongoDB, 
RethinkDB

Implemented in

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Dynamo , Riak, CouchDB, 
Redis, Cassandra, Voldemort, 
MongoDB, RethinkDB

Implemented in



Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are

read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously

propagates the update or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs coordination protocols (e.g. Paxos) or is
inconsistent

Replication: Where

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Functional Techniques Non-Functional

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Read Latency

Write Throughput

Durability



NoSQL Storage Management
In a Nutshell

Si
ze

H
D

D
SS

D
R

A
M

SRRR

SWRW

SRRR

SWRW

SRRR

SWRW

 Caching
 Primary Storage
 Data Structures

D
ur

ab
le

V
ol

at
ile

 Caching
 Logging
 Primary Storage

 Logging
 Primary Storage

High Performance

Typical Uses in DBMSs:

Low  Performance RR: Random Reads 
RW: Random Writes

SR: Sequential Reads 
SW: Sequential Writes

Sp
ee

d
, C

o
st

RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/ 
Caching

Log

Data



NoSQL Storage Management
In a Nutshell

Si
ze

H
D

D
SS

D
R

A
M

SRRR

SWRW

SRRR

SWRW

SRRR

SWRW

 Caching
 Primary Storage
 Data Structures

D
ur

ab
le

V
ol

at
ile

 Caching
 Logging
 Primary Storage

 Logging
 Primary Storage

High Performance

Typical Uses in DBMSs:

Low  Performance RR: Random Reads 
RW: Random Writes

SR: Sequential Reads 
SW: Sequential Writes

Sp
ee

d
, C

o
st

RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/ 
Caching

Log

Data

Promotes durability of 
write operations.

Increases write 
throughput.

Is good for 
read latency.

Improves 
latency.



Functional Techniques Non-Functional

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Query Processing

Read Latency

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views



 Local Secondary Indexing: Fast writes, scatter-gather
queries

 Global Secondary Indexing: Slow or inconsistent writes,
fast queries

 (Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and θ-joins in RethinkDB)

 Analytics Frameworks: fallback for missing query
capabilities

 Materialized Views: similar to global indexing

Query Processing Techniques
Summary



 High-Level Database Categories:
 Relational, Key-Value, Wide-Column, Document, Graph

 Two out of {Consistent, Available, Partition Tolerant}

 The (No)SQL Toolbox: systems use similar techniques
that promote certain capabilities

 Decision Tree: maps requirements to concrete systems

Summary

Techniques
Sharding, Replication,

Storage Management, 
Query Processing 

Functional
Requirements

Non-functional
Requirements

promote



TRIGGERS & MORE

Active Database Features



Databases are Passive
Challenge: How to Build Reactive Applications?

circular shapes

Are there new
circles?



Databases are Passive
Challenge: How to Build Reactive Applications?

circular shapes

Change discovery through periodic polling
→ Inefficient
→ Slow



Triggers: simple action-mechanisms
◦ Use cases:

 (Referential) integrity

 Change data capture

ECA rules: Event-Condition-Action
◦ Captures composite events
◦ More expressive than triggers 

(rule languages)
◦ Advanced use cases:

 Materialized view maintenance

 Pattern recognition

 (complex) event processing

Active Database Features
Modeling Behavioral Domain Aspects



Materialized Views: precomputed query results
◦ Used to speed up pull-based queries, e.g in data

warehouses

◦ Implementation aspects:

 Eager vs. lazy

 Incremental vs. recomputation-based

 Partial maintenance vs. full maintenance

 Self-maintainability vs. expressiveness

Change Notification Mechanisms: inform subscribers 
of possibly invalidated query results
◦ Used to invalidate caches in the middle tier (cf. 3-tier stack)

View Maintenance
Keeping Track of Query Results



View Maintenance By Example
Matching Every Query Against Every Update

Similar processing for:
• Triggers
• ECA rules

 Potential bottlenecks:
• Number of queries/triggers/rules
• Write throughput
• Complexity



EVOLVING DOMAINS

Data Stream Management



SELECT name, x, y 
FROM People
WHERE x BETWEEN 0 AND 25
AND y BETWEEN 0 AND 15

ORDER BY name ASC

A B
C

x

y

Find people in Room B:

0 10 20

5

10

1. 

2.

3.

Wolle (21/4)

5 15 25

15

Erik (5/10)

Push-Based Access For Evolving Domains
Continuous Queries Over Data Streams



Data Stream Management Systems
High-Level Architecture

working memory database

archive
(offline)stream query

processor



Typical Stream Operators
Examples

Filter & Transform

https://www.infoq.com/presentati
ons/stream-processors-databases

Group

Aggregates Windows

Filter Map GroupByKey

Tumbling

Sliding

SUM()

COUNT()

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processors-databases
https://www.infoq.com/presentations/stream-processing-apache-flink


Complex Event Processing
Detecting Patterns

event patterns

low-level events
ab

st
ra

ct
io

n

complex events

 Abstraction from raw event streams

 Detection of relationships between events

 Often modeled in abstraction hierarchies

 Techniques:
◦ Transformation, filtering

◦ Correlation, aggregation, …

◦ Pattern detection 
 composite events

Illustration taken from: Bruns, R. & Dunkel, J, Complex Event Processing: Komplexe
Analyse von massiven Datenströmen mit CEP (2015). Springer Vieweg, 2015



event time

 Arrival time: When was the event received?
 Event time: When did the event occur?
 Clock Skew: difference between arrival and event time

Notions of Time
Arrival Time vs. Event Time

Illustration take from: Stephan Ewen, How Apache Flink™ Enables New Streaming Applications, Part 1 (2015)
https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1 (2018-03-16)

processing time

data stream

https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1


Approximation & Load Shedding
Provide the „Best“ Answer While Avoiding to Fall Behind

raw stream

Prohibitive!



 Sampling: can be optimized for different things, e.g.
◦ Position stream (e.g. „select every 10th item“)

◦ Value (e.g. hash partitioning)

◦ Semantic criteria

Approximation & Load Shedding
Provide the „Best“ Answer While Avoiding to Fall Behind

raw stream

Sampled
stream



Summary

Database Stream

Update rate Low High, bursty

Primitive Persistent collections Transient streams

Temporal scope Historical Windowed

Access random sequential

Queries One-time Continuous

Query Plans Static Dynamic

Precision Accurate Approximate



Outline

• Big Picture:
• Processing Pipelines
• Stream vs. Batch
• Lambda vs. Kappa 

Architecture
• System Survey:

• Storm/Trident
• Samza
• Spark Streaming
• Flink

• Discussion:
• Comparison Matrix
• Other Systems

Real-Time Databases
Push-Based Collections

Introduction
Where From? Where To?

Stream Processing
Big Data + Low Latency

Future Directions
Current Research & Outlook

∑



OVERVIEW

Scalable Data 
Processing



ApplicationProcessing
Persistence/
Streaming Serving

We are here!

A Data Processing Pipeline



Data processing frameworks hide complexities of scaling, e.g.:

• Deployment - code distribution, starting/stopping work

• Monitoring - health checks, application stats

• Scheduling - assigning work, rebalancing

• Fault-tolerance - restarting workers, rescheduling failed work

Data Processing Frameworks
Scale-Out Made Feasible

Scaling out

Running in cluster

Running on single node



Big Data Processing Frameworks
What are your options?

Amazon Elastic

MapReduce

Google Dataflow



Big Data Processing Frameworks
What are your options?

What to use when?



lo
w

la
te

n
cy

high throughput

Big Data Processing Frameworks
What are your options?



CONCEPTS

Batch vs. Stream
Processing



Application
Batch

(e.g. MapReduce)
Persistence
(e.g. HDFS)

Serving
(e.g. HBase)

• Cost-effective & Efficient 

• Easy to reason about: operating on complete data

But:

• High latency: periodic jobs (e.g. during night times)

Batch Processing
„Volume“



Stream Processing
„Velocity“

• Low end-to-end latency

• Challenges: 

• Long-running jobs - no downtime allowed

• Asynchronism - data may arrive delayed or out-of-order

• Incomplete input - algorithms operate on partial data

• More: fault-tolerance, state management, guarantees, …

Streaming
(e.g. Kafka, Redis)

ApplicationServing
Real-Time 

(e.g. Storm)



Lambda Architecture
Batch(Dold) + Stream(DΔnow) ≈ Batch(Dall)

ApplicationBatchPersistence Serving

Real-Time

• Fast output (real-time)

• Data retention + reprocessing (batch)
→ „eventually accurate“ merged views of real-time & batch 
Typical setups: Hadoop + Storm (→ Summingbird), Spark, Flink

• High complexity 2 code bases & 2 deployments

Nathan Marz, How to beat the CAP theorem (2011)
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Streaming
(e.g. Kafka, Redis)

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html


Kappa Architecture
Stream(Dall) = Batch(Dall)

Streaming + retention
(e.g. Kafka, Kinesis)

• Simpler than Lambda Architecture 

• Data retention for history

• Reasons against Kappa:

• Existing legacy batch system

• Special tools only for a particular batch processor

• Only incremental algorithms

Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture

ApplicationServingReal-Time

replay

https://www.oreilly.com/ideas/questioning-the-lambda-architecture


Wrap-up
Data Processing

• Processing frameworks abstract from scaling issues

• Lambda Architecture: batch + stream processing
• Kappa Architecture: stream-only processing

Batch processing
• easy to reason about
• extremely efficient
• huge input-output 

latency

Stream processing
• quick results
• purely incremental
• potentially complex to

handle



SURVEY

Popular Stream 
Processing Systems



Processing Models
Batch vs. Micro-Batch vs. Stream

low latency high throughput

stream batchmicro-batch



Overview

◦ First production-ready, well-adopted stream processor

◦ Compatible: native Java API, Thrift, distributed RPC

◦ Low-level: no primitives for joins or aggregations

◦ Native stream processor: latency < 50 ms feasible

◦ Big users: Twitter, Yahoo!, Spotify, Baidu, Alibaba, …

History

◦ 2010: developed at BackType (acquired by Twitter)

◦ 2011: open-sourced

◦ 2014: Apache top-level project

Storm
„Hadoop of real-time“



Dataflow

Directed Acyclic Graphs (DAG):
• Spouts: pull data into topology
• Bolts: do processing, emit data
• Asynchronous
• Lineage can be tracked for each tuple

→ At-least-once has 2x messaging
overhead



Cluster Architecture
How Storm Scales

Nimbus
Zookeeper

Submit
Topology

Supervisor
Worker Worker

Worker Worker

Supervisor
Worker Worker

Worker Worker

Storm Slave Storm Slave



Cluster Architecture
How Storm Scales

Nimbus
Zookeeper

Submit
Topology

Supervisor
Worker Worker

Worker Worker

Supervisor
Worker Worker

Worker Worker

Storm Slave Storm Slave

JVM for each
worker (runs
spouts and
bolts as tasks)

Handles 
coordination

Scheduling & 
Monitoring



State Management
Recover State on Failure

• In-memory or Redis-backed reliable state

• Synchronous state communication on the critical path

→ infeasible for large state



Back Pressure
Throttling Ingestion on Overload

Approach: monitoring bolts‘ inbound buffer
1. Exceeding high watermark → throttle!
2. Falling below low watermark → full power!

1. too many
tuples

3. tuples get
replayed

2. tuples time 
out and fail



Overview:

◦ Abstraction layer on top of Storm

◦ Released in 2012 (Storm 0.8.0)

◦ Micro-batching

◦ New features:

 High-level API: aggregations & joins

 Strong ordering

 Stateful exactly-once processing

 Performance penalty

Trident
Stateful Stream Joining on Storm



Trident
Partitioned Micro-Batching

3 Parti-
tions

3 BatchesIllustration taken from: “Storm 
applied”, Sean T. Allen et al.



Overview
◦ Co-developed with Kafka

→ Kappa Architecture

◦ Simple: only single-step jobs

◦ Local state

◦ Native stream processor: low latency

◦ Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, …

History
◦ Developed at LinkedIn

◦ 2013: open-source (Apache Incubator) 

◦ 2015: Apache top-level project

Samza
Real-Time on Top of Kafka

Illustration taken from: Jay Kreps, Questioning the Lambda Architecture (2014)
https://www.oreilly.com/ideas/questioning-the-lambda-architecture (2017-03-02)

https://www.oreilly.com/ideas/questioning-the-lambda-architecture


Dataflow
Simple By Design

• Job: processing step (≈ Storm bolt)
→ Robust
→ But: often several jobs

• Task: job instance (parallelism)

• Message: single data item

• Output persisted in Kafka
→ Easy data sharing
→ Buffering (no back pressure!)
→ But: Increased latency

• Ordering within partitions

• Task = Kafka partitions: not-elastic on purpose

Martin Kleppmann, Turning the database inside-out with Apache Samza (2015)
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/ (2017-02-23)

https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/


Samza
Local State

Illustrations taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

Advantages of local state:

• Buffering
→ No back pressure
→ At-least-once delivery
→ Simple recovery

• Fast lookups

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing


Dataflow
Example: Enriching a Clickstream

Example: the enriched
clickstream is available to
every team within the 
organization

Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014)
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing


State Management
Straightforward Recovery

Illustration taken from: Navina Ramesh, Apache Samza, LinkedIn’s Framework for Stream Processing (2015)
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing (2017-02-26)

https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing


Overview
◦ High-level API: immutable collections (RDDs) 

◦ Community: 1000+ contributors in 2015

◦ Big users: Amazon, eBay, Yahoo!, IBM, Baidu, …

History
◦ 2009: developed at UC Berkeley

◦ 2010: open-sourced

◦ 2014: Apache top-level project

Spark
„MapReduce successor“

Core SQL MLlib GraphX
Spark 

Streaming



Overview
◦ High-level API: DStreams ( ̴Java 8 Streams)

◦ Micro-Batching: seconds of latency

◦ Rich features: stateful, exactly-once, elastic

History
◦ 2011: start of development

◦ 2013: Spark Streaming becomes part of Spark Core

Spark Streaming



Resilient Distributed Data set (RDD)

◦ Immutable collection & deterministic operations

◦ Lineage tracking: 
→ state can be reproduced
→ periodic checkpoints reduce recovery time 

DStream: Discretized RDD

◦ RDDs are processed in order: no ordering within RDD

◦ RDD scheduling ̴50 ms → latency >100ms

Spark Streaming
Core Abstraction: DStream

Illustration taken from: 
http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview


Example
Counting Page Views

Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." Proceedings 
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013.

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)



Overview
◦ Native stream processor: Latency <100ms feasible

◦ Abstract API for stream and batch processing, stateful, exactly-
once delivery

◦ Many libraries: Table and SQL, CEP, Machine Learning , Gelly…

◦ Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando…

History
◦ 2010: start as Stratosphere at TU Berlin, HU Berlin, and HPI 

Potsdam

◦ 2014: Apache Incubator, project renamed to Flink

◦ 2015: Apache top-level project

Flink



Architecture
Streaming + Batch

https://www.infoq.com/presentation
s/stream-processing-apache-flink

https://www.infoq.com/presentations/stream-processing-apache-flink


Managed State
Streaming + Batch

https://www.infoq.com/presentation
s/stream-processing-apache-flink

• Automatic Backups of local state

• Stored in RocksDB, Savepoints written to HDFS 

https://www.infoq.com/presentations/stream-processing-apache-flink


Highlight: Fault Tolerance
Distributed Snapshots

• Ordering within stream partitions
• Periodic checkpoints
• Recovery:

1. reset state to checkpoint
2. replay data from there

66

Illustration taken from: 
https://ci.apache.org/projects/flink/flink-docs-release-
1.2/internals/stream_checkpointing.html (2017-02-26)

Exactly-once

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream_checkpointing.html


WRAP UP

Side-by-side
comparison



Storm Trident Samza
Spark 

Streaming
Flink 

(streaming)

Strictest
Guarantee

at-least-
once

exactly-
once

at-least-
once

exactly-once exactly-once

Achievable
Latency

≪100 ms <100 ms <100 ms <1 second <100 ms

State 
Management


(small state)


(small state)

  

Processing 
Model

one-at-a-
time

micro-batch
one-at-a-

time
micro-batch

one-at-a-
time

Backpressure  
no

(buffering)  

Ordering 
between
batches

within
partitions

between
batches

within
partitions

Elasticity     

Comparison



Performance
Yahoo! Benchmark

“Storm […] and Flink […] show sub-second latencies at 
relatively high throughputs with Storm having the lowest
99th percentile latency. Spark streaming […] supports high 
throughputs, but at a relatively higher latency.”

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

 Based on real use case:
◦ Filter and count ad impressions

◦ 10 minute windows



And even more: Kinesis, Gearpump, MillWheel, Muppet, 
S4, Photon, …

Other Systems

Heron Apex Dataflow

Beam
Kafka

Streams
IBM InfoSphere

Streams



 Stream Processors:

 Many Dimensions of Interest: consistency guarantees, 
state management, backpressure, ordering, elasticity, …

Summary

latency throughput



Outline

• Big Picture:
• Why Push-Based

Database Queries?
• Where Do Real-Time 

Databases Fit in?
• System Survey:

• Meteor
• RethinkDB
• Parse
• Firebase

• Discussion:
• Comparison Matrix
• Other Systems

Real-Time Databases
Push-Based Collections

Introduction
Where From? Where To?

Stream Processing
Big Data + Low Latency

Future Directions
Current Research & Outlook

∑



REAL-TIME DBS

Making Databases 
Push-Based



Traditional Database Access
No Request? No Data!

circular shapes ?

What‘s the 
current state?

Query maintenance: periodic polling
→ Inefficient
→ Slow



Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

Database 
Management

static collections

Stream 
Processing

ephemeral
streams

push-basedpull-based

Data Stream 
Management

persistent/
ephemeral streams

Real-Time
Databases

evolving collections



REAL-TIME DBS

System Survey



Overview:
◦ JavaScript Framework for interactive apps and websites

 MongoDB under the hood

 Real-time result updates, full MongoDB expressiveness

◦ Open-source: MIT license

◦ Managed service: Galaxy (Platform-as-a-Service)

History:
◦ 2011: Skybreak is announced

◦ 2012: Skybreak is renamed to Meteor

◦ 2015: Managed hosting service Galaxy is announced

Meteor



Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

repeat query every 10 seconds

forward
CRUD



Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data modifications
• Master-slave replication:

Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C



Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs

Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events



Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-score 

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!



Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs

→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!



Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

 Push-based queries (filters only)

 Joins (non-streaming)

 Strong consistency: linearizability

◦ JavaScript SDK (Horizon): open-source, as managed service

◦ Open-source: Apache 2.0 license

History:
◦ 2009: RethinkDB is founded

◦ 2012: RethinkDB is open-sourced under AGPL

◦ 2016, May: first official release of Horizon (JavaScript SDK)

◦ 2016, October: RethinkDB announces shutdown

◦ 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB



RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

• Range-sharded data
• RethinkDB proxy: support node

without data
• Client communication
• Request routing
• Real-time query matching

• Every proxy receives 
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962


Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse



Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

http://parseplatform.github.io/docs/parse-server/guide/#live-queries


Overview:
◦ Real-time state synchronization across devices
◦ Simplistic data model: nested hierarchy of lists and objects
◦ Simplistic queries: mostly navigation/filtering
◦ Fully managed, proprietary
◦ App SDK for App development, mobile-first
◦ Google services integration: analytics, hosting, authorization, …

History:
◦ 2011: chat service startup Envolve is founded

→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)

◦ 2012: Firebase is founded
◦ 2013: Firebase is acquired by Google
◦ 2017, October: Firestore is released

Firebase



Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Tree data model: application state ̴JSON object
• Subtree synching: push notifications for specific keys only

→ Flat structure for fine granularity

→ Limited expressiveness!

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html


Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko


Firebase
Hard Scaling Limits

Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018)
https://firebase.google.com/docs/database/rtdb-vs-firestore (2018-03-10)

“Scale to around 100,000 concurrent connections
and 1,000 writes/second in a single database. 
Scaling beyond that requires sharding your data 
across multiple databases.”

https://firebase.google.com/docs/database/rtdb-vs-firestore


Illustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers  (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

collections

documents

references

Firebase
Firestore: New Model

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html


Firebase
Firestore: New Model

Illustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers  (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

tree-like structure

finer access granulates

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html


Firebase
Firestore: Summary

• More specific data selection
• Logical AND for some filter combinations

… But:
• Still Limited Expressiveness

• No logical OR
• No logical AND for many filter combinations
• No content-based search (regex, full-text search)

• Still Limited Write Throughput:
• 500 writes/s per collection
• 1 writes/s per document

Firebase, Firestore: Quotas and Limits (2018)
https://firebase.google.com/docs/firestore/quotas (2018-03-10)

https://firebase.google.com/docs/firestore/quotas


Honorable Mentions
Other Systems With Real-Time Features



REAL-TIME DBS

Summary & Discussion



Meteor
Poll-and-Diff Oplog Tailing

RethinkDB Parse Firebase Baqend

Scales with
write TP      

Scales with no. 
of queries

    ?
(100k connections)



Composite 
queries (AND/OR)

    
(AND In Firestore)



Sorted queries     
(single attribute)



Limit      

Offset     
(value-based)



Wrap-Up
Direct Comparison



 Scalability: 

 Handle increasing throughput

 Handle additional queries

 Expressiveness: 

 Content-based search? Composite filters?

 Ordering? Limit? Offset?

 Legacy Support: 

 Real-time queries for existing databases?

 Decouple OLTP from real-time workloads?

Summary
Real-Time Databases: Major challenges



Outline

• Caching Dynamic Data:
• Why is the Web Slow?
• Caching to the Rescue!
• Query Caching

• Real-Time Queries:
• Scalability
• Expressiveness
• Legacy Compatibility
• Use Cases

• Open Challenges:
• TTLs & Transactions
• Polyglot Persistence

• Summary

Real-Time Databases
Push-Based Collections

Introduction
Where From? Where To?

Stream Processing
Big Data + Low Latency

Future Directions
Current Research & Outlook

∑



OUTLOOK

Our Research at the 
University of Hamburg



Problem: Slow Websites
Two Bottlenecks: Latency and Processing

High 

Latency

Processing Overhead



Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing



New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10



1 4 020

Browser
Cache

CDN

Consistent Web Caching
The Cache Sketch



1 4 020

Browser
Cache

CDN

Consistent Web Caching
The Cache Sketch



1 4 020

Browser
Cache

CDN

Consistent Web Caching
The Cache Sketch



1 4 020

purge(obj)

hashB(oid)hashA(oid)

3

Browser
Cache

CDN

1

Consistent Web Caching
The Cache Sketch



1 4 020 31 1 110
Flat(Counting Bloomfilter)

Browser
Cache

CDN

1

Consistent Web Caching
The Cache Sketch



1 4 020 31 1 110

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

Consistent Web Caching
The Cache Sketch



1 4 020 31 1 110

hashB(oid)hashA(oid)

Browser
Cache

CDN

1

Consistent Web Caching
The Cache Sketch



1 4 020 31 1 110

Browser
Cache

CDN

1

Consistent Web Caching
The Cache Sketch



1 4 020

hashB(oid)hashA(oid)

1 1 110

Browser
Cache

CDN

Consistent Web Caching
The Cache Sketch



1 4 020

hashB(oid)hashA(oid)

1 1 110

Browser
Cache

CDN

Consistent Web Caching
The Cache Sketch

With 20.000 distinct updates and 5% error rate: 11 KByte



RESEARCH

How to Invalidate DB
Query Results?



How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

InvaliDB
Invalidating DB Queries



InvaliDB
Invalidating DB Queries

Server

Create
Update
Delete

Pub-Sub Pub-Sub

Real-Time
Queries

(Websockets)

Fresh Caches



Pub-Sub Pub-Sub

Baqend Real-Time Queries
Realtime Decoupled

App Server



Pub-Sub Pub-Sub

Baqend Real-Time Queries
Realtime Decoupled

App Server



Pub-Sub Pub-Sub

Baqend Real-Time Queries
Realtime Decoupled

Keeps data up-to-date!

App Server



Baqend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through different 
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results 
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑



Baqend Real-Time Queries
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine
→ legacy-compatible

Write op!



Linear Scalability Stable Latency Distribution

Baqend Real-Time Queries
Low Latency + Linear Scalability

Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17



var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.offset(20)
.limit(10);

query.resultList(result => ...);

query.resultStream(result => ...);

Static Query

Real-Time Query

Programming Real-Time Queries
JavaScript API





Platform

 Platform for building
(Progressive) Web Apps

 15x Performance Edge

 Faster Development

Speed Kit

 Turns Existing Sites 
into PWAs

 50-300% Faster Loads

 Offline Mode

Baqend
Try It Out!



Speed Kit
Accelerate Your Website!

https://test.speed-kit.com/

https://test.speed-kit.com/


Website

Existing
Backend

3rd Party
Services

Speed Kit
Baqend Caching for Legacy Websites



Website Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

PushPull

3rd Party
Services

Speed Kit
Baqend Caching for Legacy Websites

Website with
Snippet



FUTURE DIRECTIONS

Open Challenges



 Setting: server assigns a caching time-to-live (TTL) to
each record and query result

 Problem: 
TTLs too short: Bad cache-hit rate

TTLs too large: Bloom filter‘s false positive rate degrades

 Approach: Collect access metrics and estimate

Objects: calculate the expected value of the time to next write (assuming
a poisson process)

Queries:

 Initial estimate: estimated time until first object in result is updated

 Refinement: upon invalidation TTL is adapted towards observed TTL 
using an EWMA

TTL Estimation
Quantifying Cacheability of Dynamic Content



Setting: query results can either be represented as
references (id-list) or full results (object-lists)

Current Approach: Cost-based decision model that
weighs expected round-trips vs expected invalidations

Desired: Adaptive agent that actively explores decisions

TTL Estimation
Learning Representations

{𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3}

Object-ListsId-Lists

{ 𝑖𝑑: 1, 𝑣𝑎𝑙: ′𝑎′ , 𝑖𝑑: 2, 𝑣𝑎𝑙: ′𝑏′ ,
{𝑖𝑑: 3, 𝑣𝑎𝑙: ′𝑐′}}

Less Invalidations Less Round-Trips



TTL Estimation
Open Challenge: Learning Workloads

„Backwards-oriented“ (current approach):

 Mesure & use moving average or newest measurement
 Cannot react to spikes/fluctuation nor detect patterns

„Predictive online-learning“:

 Extrapolate using regression (e.g. linear or polynomial) or
time-series models (Exponential Smoothing, AR, ARIMA, 
Gaussian Processes, …)

 Resource intensive, very difficult to select & evalute model

„Reactive“:
 Use Reinforcement learning to automatically explore

decisions
 Rewards usually noisy, delayed or hidden (e.g. staleness)



Polyglot Persistence Mediator
Schemas can be annotated with requirements/SLAs

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields



Polyglot Persistence Mediator
Routing to the „optimal“ datbase system

Application

Database
Metrics

Data and 
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

Routing
Model 

Recursive Ranking Algorithm
for schemaElemt DB mapping



Meta-DBaaS: Mediate over DBaaS-systems unify SLAs

Live Migration: adapt to changing requirements

Database Selection: Actively minimize SLA violations

Utility Functions/SLAs: Capture trade-offs comprehensively

Workload Management: Adaptive Runtime Scheduling

Polyglot Persistence
Open Challenges



Distributed Transactions

Transaction Abort Rates: How to mitigate high abort
rates caused by long running transactions?

Automatic Transaction Protocol Selection: Can the 
optimal protocol (2PL, BOCC+, RAMP, …) be learned
and chosen at runtime?

Transactional Visibility For Real-Time Queries: How to
include transactions without introducing bottlenecks?



CLOSING TIME

Summary



Summary
Real-Time Data Management

Database 
Management

Real-Time 
Databases

Data Stream 
Management

Stream 
Processing

Data persistent collections persistent/ephemeral streams

Processing one-time
one-time + 
continuous

continuous

Access random
random + 
sequential

sequential

Schema structured
structured, 

unstructured

push-basedpull-based



Summary
Real-Time Data Management

Database 
Management

Real-Time 
Databases

Data Stream 
Management

Stream 
Processing

Data persistent collections persistent/ephemeral streams

Processing one-time
one-time + 
continuous

continuous

Access random
random + 
sequential

sequential

Schema structured
structured, 

unstructured

Database 
Management

Stream 
Processing

Real-Time
Databases

Data Stream 
Management

static
collections

evolving
collections

structured
streams

unstructured
streams

push-basedpull-based

{wingerath, gessert, ritter}@informatik.uni-hamburg.de



Read them at blog.baqend.com!

blog.baqend.com


Our Related Publications

Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17

NoSQL Database Systems: A Survey and Decision Guidance
SummerSOC ‘16

Real-time stream processing for Big Data
it - Information Technology 58 (2016)

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Baqend Tech Blog (2017): https://medium.com/p/822ff87d2f87

The Case For Change Notifications in Pull-Based Databases
BTW ‘17

Scientific Papers:

Blog Posts:

Learn more at blog.baqend.com!

https://medium.com/p/822ff87d2f87
blog.baqend.com


Thank you

@baqendcom

{wingerath, gessert, ritter}@informatik.uni-hamburg.de

Blog: blog.baqend.com
Slides: slides.baqend.com


