Real-Time Data Management For Big Data

<u>Wolfram Wingerath</u>, Felix Gessert, <u>Norbert Ritter</u> {wingerath, gessert, ritter}@informatik.uni-hamburg.de March 29, EDBT 2018, Vienna

Who We Are

Norbert Ritter Professor

Felix Gessert CEO

Wolfram Wingerath Developer

Research:

•

- NoSQL & Cloud Databases
- Polyglot Persistence
- Database Benchmarking

Practice:

. . .

- Backend-as-a-Service
 - Web Caching •
 - Real-Time Database •

Outline

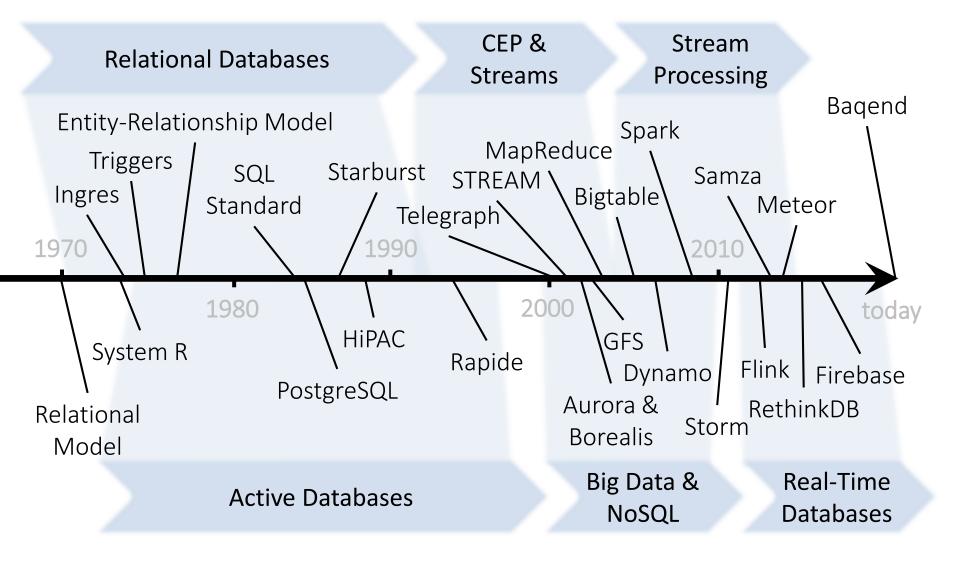
Introduction Where From? Where To?

Ö	Stream Processing
	Big Data + Low Latency

Future Directions Current Research & Outlook

- A Short History of Data Management
- Database Management:
 - (No)SQL Decision Tree
 - (No)SQL Toolbox
 - Active Database Features
- Data Stream Management:
 - General Architecture
 - Stream Operators
 - Approximation & Sampling
 - CEP

A Short History of Data Management Hot Topics Through The Ages



CONCEPTS & REQUIREMENTS The NoSQL Toolbox

NoSQL Database Systems: A Survey and Decision Guidance

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter

Universität Hamburg, Germany (gessert, wingerath, friedrich, ritter)@informatik.uni-hamburg.de

Abstract. Today, data is generated and consumed at unprecedented scale. This has lead to novel approaches for scalable data management subsumed under the term "NoSQL" database systems to handle the everincreasing data volume and request loads. However, the heterogeneity and diversity of the numerous existing systems impede the well-informed selection of a data store appropriate for a given application context. Therefore, this article gives a top-down overview of the field: Instead of contrasting the implementation specifics of individual representatives, we propose a comparative classification model that relates functional and non-functional requirements to techniques and algorithms employed in NoSQL databases. This NoSQL Toolbox allows us to derive a simple decision tree to help practitioners and researchers filter potential system candidates based on central application requirements.

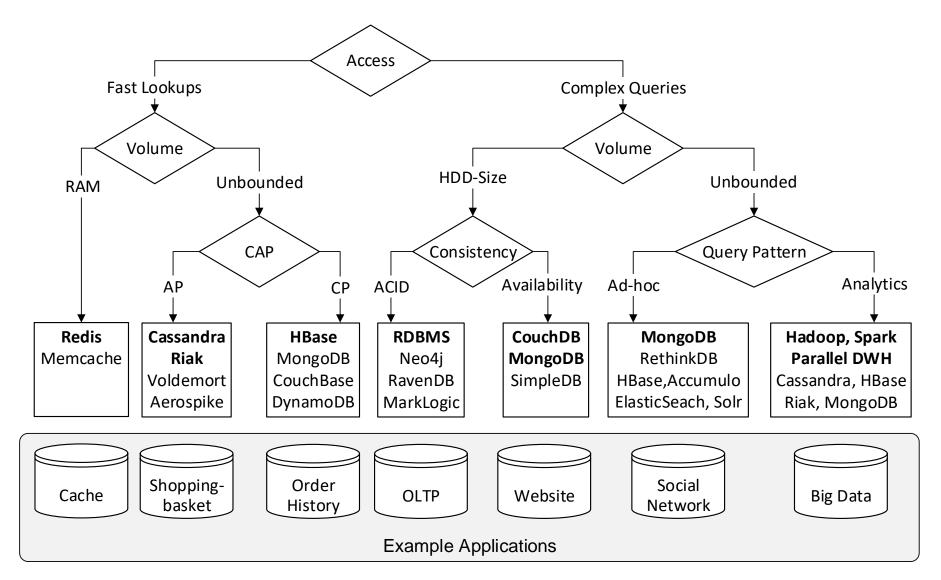
1 Introduction

Traditional relational database management systems (RDBMSs) provide powerful mechanisms to store and query structured data under strong consistency and transaction guarantees and have reached an unmatched level of reliability, stability and support through decades of development. In recent years, however, the amount of useful data in some application areas has become so vast that it cannot be stored or processed by traditional database solutions. User-generated content in social networks or data retrieved from large sensor networks are only two examples of this phenomenon commonly referred to as **Big Data** [35]. A class of novel data storage systems able to cope with Big Data are subsumed under the term **NoSQL databases**, many of which offer horizontal scalability and higher availability than relational databases by sacrificing querying capabilities and consistency guarantees. These trade-offs are pivotal for service-oriented computing and as-a-service models, since any stateful service can only be as scalable and fault-tolerant as its underlying data store.

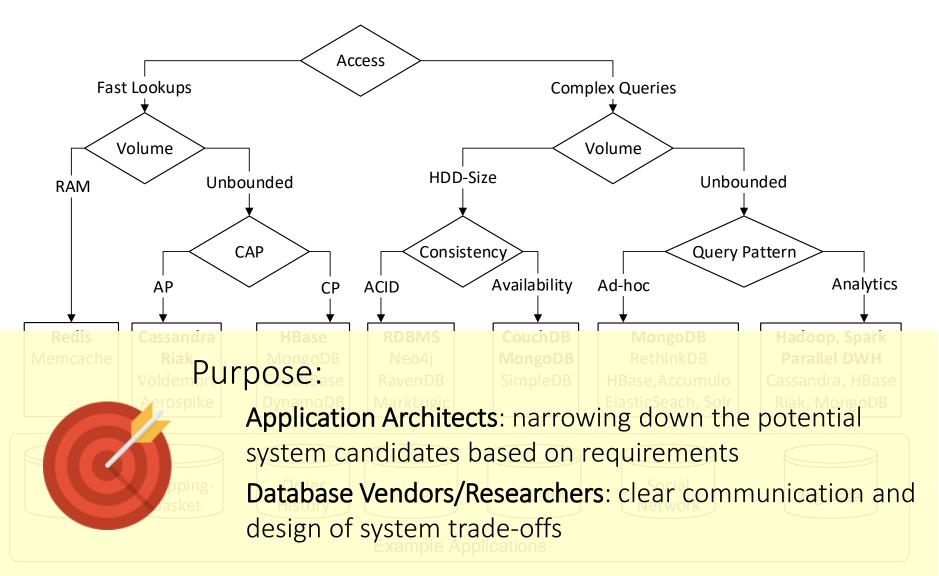
There are dozens of NoSQL database systems and it is hard to keep track of where they excel, where they fail or even where they differ, as implementation details change quickly and feature sets evolve over time. In this article, we therefore aim to provide an overview of the NoSQL landscape by discussing employed concepts rather than system specificities and explore the requirements typically posed to NoSQL database systems, the techniques used to fulfil these requirements and the trade-offs that have to be made in the process. Our focus lies on key-value, document and wide-column stores, since these NoSQL categories

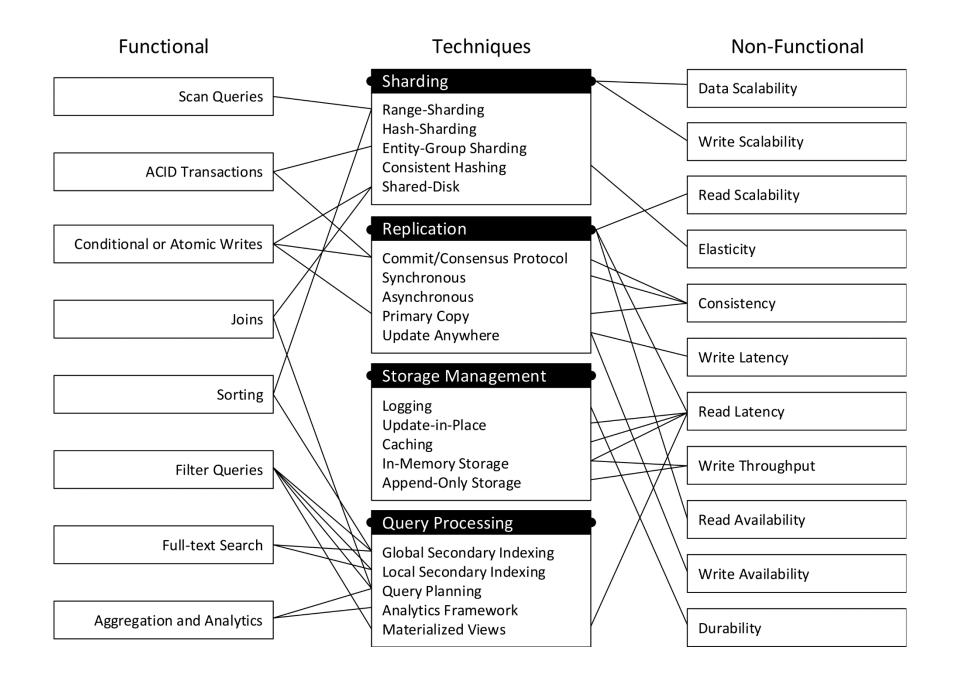
http://www.baqend.com /files/nosql-survey.pdf

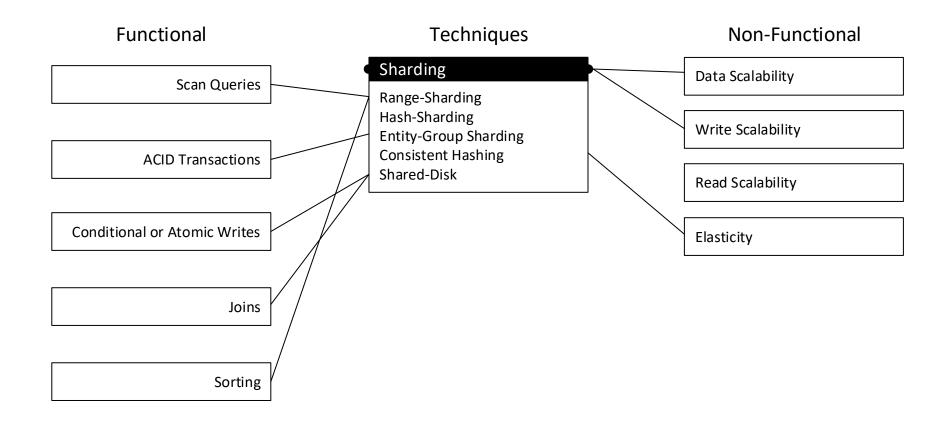
(No)SQL Decision Tree



(No)SQL Decision Tree

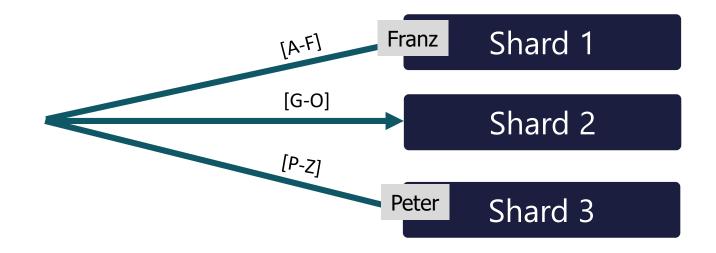






Sharding (aka Partitioning, Fragmentation) Scaling Storage and Throughput

Horizontal distribution of data over nodes



Partitioning strategies: Hash-based vs. Range-based
 Difficulty: Multi-Shard-Operations (join, aggregation)

Sharding

Approaches

Hash-based Sharding

- Hash of data values (e.g. key) determines partition (shard)
- **Pro**: Even distribution
- Contra: No data locality

Range-based Sharding

- Assigns ranges defined over fields (shard keys) to partitions
- **Pro**: Enables *Range Scans* and *Sorting*
- Contra: Repartitioning/balancing required

Entity-Group Sharding

- Explicit data co-location for single-node-transactions
- **Pro**: Enables ACID Transactions
- Contra: Partitioning not easily changable

Sharding

Approaches

Hash-based Sharding

- Hash of data values (e.g. key) d Cassan
- **Pro**: Even distribution
- Contra: No data locality

Range-based Sharding

- Assigns ranges defined over field
- Pro: Enables Range Scans and \$
- Contra: Repartitioning/balancir

Entity-Group Sharding

- Explicit data co-location for sin
- **Pro**: Enables ACID Transactions
- Contra: Partitioning not easily c

Implemented in

MongoDB, Riak, Redis, Cassandra, Azure Table,

Implemented in

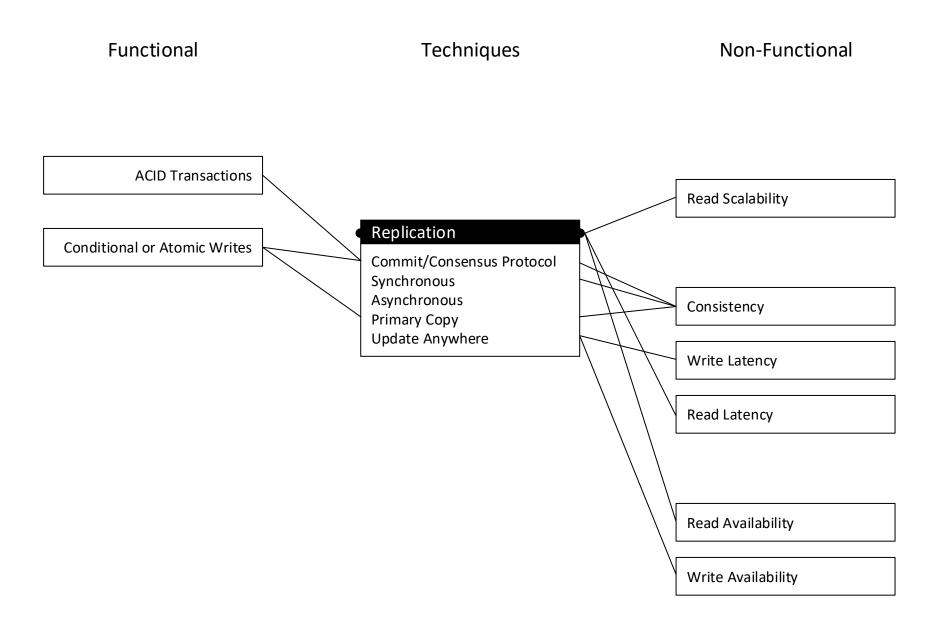
Dynamo

BigTable, HBase, DocumentDB Hypertable, MongoDB, RethinkDB, Espresso

Implemented in

G-Store, MegaStore, Relational Cloud, Cloud SQL Server

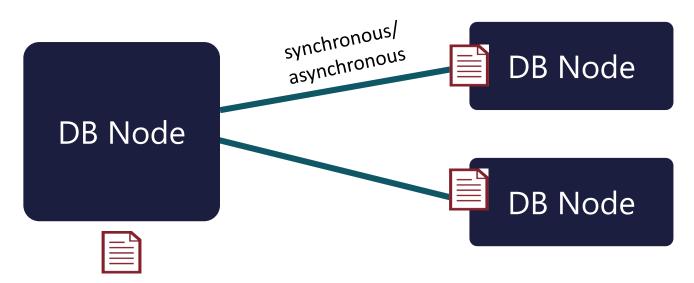
David J DeWitt and Jim N Gray: "Parallel database systems: The future of high performance database systems," Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.



Replication

Read Scalability + Failure Tolerance

Stores N copies of each data item



- Consistency model: synchronous vs asynchronous
- Coordination: Multi-Master, Master-Slave

Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer Science & Business Media (2011)

Replication: When

Asynchronous (lazy)

- Writes are acknowledged immediately
- Performed through *log shipping* or *update propagation*
- Pro: Fast writes, no coordination needed
- Contra: Replica data potentially stale (*inconsistent*)

Synchronous (eager)

- The node accepting writes synchronously propagates updates/transactions before acknowledging
- **Pro**: Consistent
- Contra: needs a commit protocol (more roundtrips), unavaialable under certain network partitions

Replication: When

Asynchronous (lazy)

- Writes are acknowledged imn
- Performed through *log shippi*.
- Pro: Fast writes, no coordinati
- Contra: Replica data potential

Synchronous (eager)

- The node accepting writes sync In updates/transactions before a piece
- **Pro**: Consistent
- **Contra**: needs a commit proto **RethinkDB** unavaialable under certain networк partitions

Implemented in

Dynamo , Riak, CouchDB, Redis, Cassandra, Voldemort, MongoDB, RethinkDB

Implemented in

BigTable, HBase, Accumulo, CouchBase, MongoDB,

t∆c

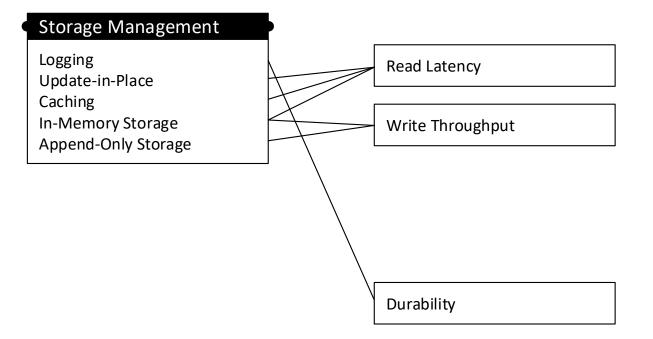
Replication: Where

Master-Slave (Primary Copy)

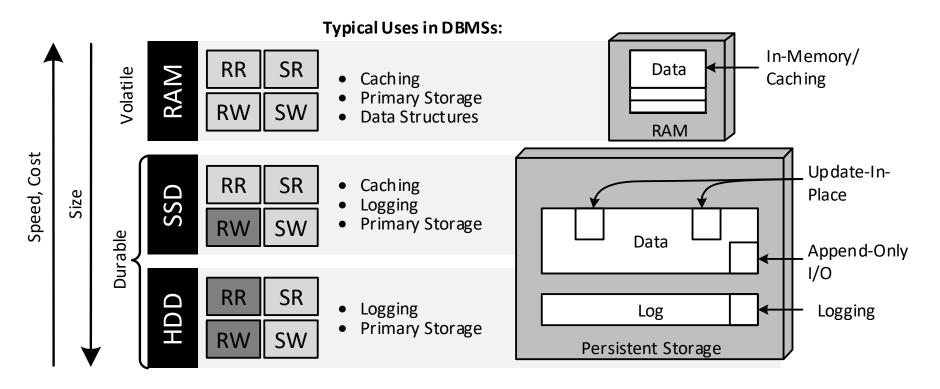
- Only a dedicated master is allowed to accept writes, slaves are read-replicas
- Pro: reads from the master are consistent
- Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)

- The server node accepting the writes synchronously propagates the update or transaction before acknowledging
- Pro: fast and highly-available
- Contra: either needs coordination protocols (e.g. Paxos) or is inconsistent

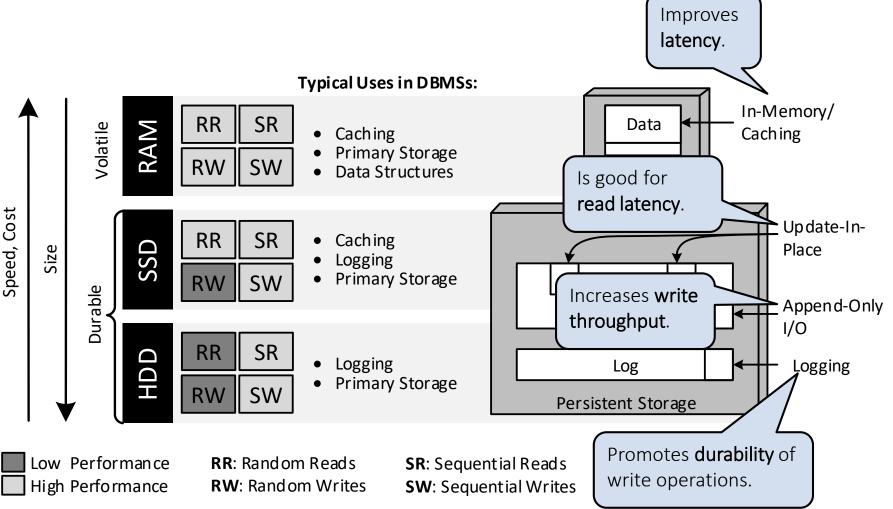


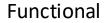
NoSQL Storage Management In a Nutshell

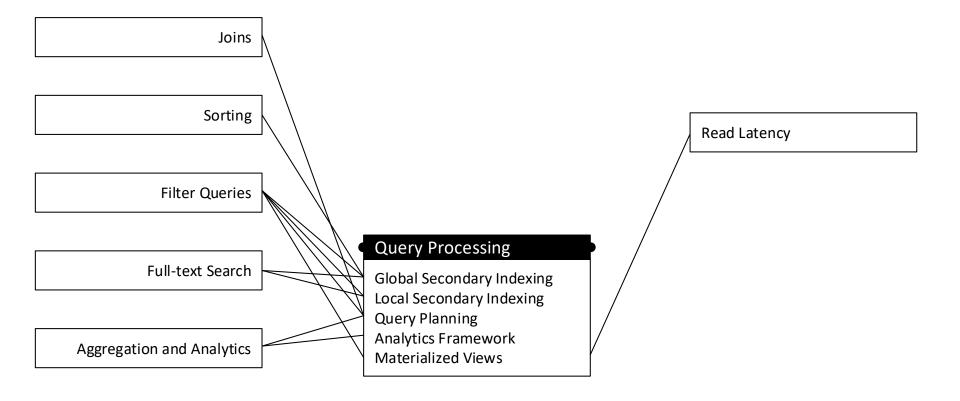


Low Performance High Performance **RR**: Random Reads **RW**: Random Writes **SR**: Sequential Reads **SW**: Sequential Writes

NoSQL Storage Management In a Nutshell







Query Processing Techniques

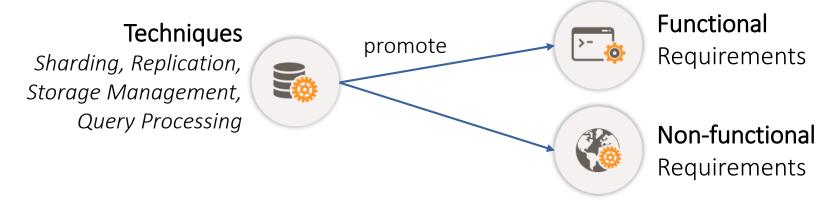
Summary

- Local Secondary Indexing: Fast writes, scatter-gather queries
- Global Secondary Indexing: Slow or inconsistent writes, fast queries
- (Distributed) Query Planning: scarce in NoSQL systems but increasing (e.g. left-outer equi-joins in MongoDB and θ-joins in RethinkDB)
- Analytics Frameworks: fallback for missing query capabilities
- Materialized Views: similar to global indexing

Summary

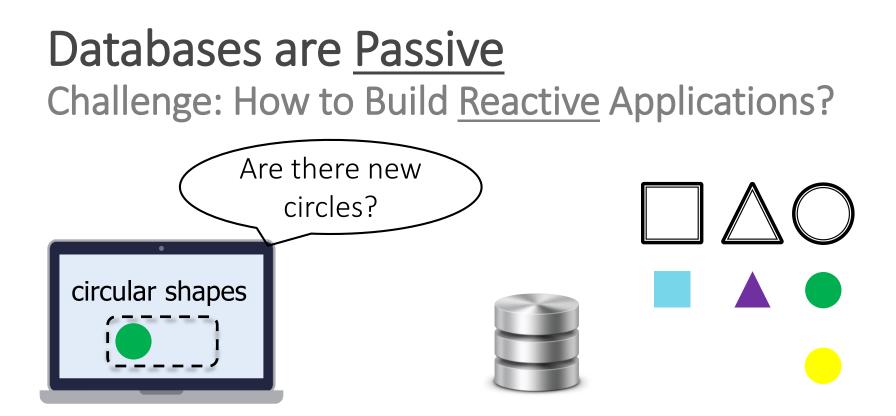
High-Level Database Categories:

- Relational, Key-Value, Wide-Column, Document, Graph
- Two out of {Consistent, Available, Partition Tolerant}
- The (No)SQL Toolbox: systems use similar techniques that promote certain capabilities



Decision Tree: maps requirements to concrete systems

TRIGGERS & MORE
Active Database Features

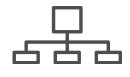


Databases are <u>Passive</u> Challenge: How to Build <u>Reactive</u> Applications?

Change discovery through periodic polling
 → Inefficient
 → Slow

Active Database Features

Modeling Behavioral Domain Aspects



Triggers: simple action-mechanisms

- Use cases:
 - (Referential) integrity
 - Change data capture

ECA rules: Event-Condition-Action

- Captures composite events
- More expressive than triggers (rule languages)
- Advanced use cases:
 - Materialized view maintenance
 - Pattern recognition
 - (complex) event processing

View Maintenance

Keeping Track of Query Results

Materialized Views: precomputed query results

- Used to speed up pull-based queries, e.g in data warehouses
- Implementation aspects:
 - Eager vs. lazy
 - Incremental vs. recomputation-based
 - Partial maintenance vs. full maintenance
 - Self-maintainability vs. expressiveness

Change Notification Mechanisms: inform subscribers of possibly invalidated query results

Used to invalidate caches in the middle tier (cf. 3-tier stack)

View Maintenance By Example Matching Every Query Against Every Update

Is match? res 20 Was match? Was match? Ves 30 Ves 20

add

remove

none

change

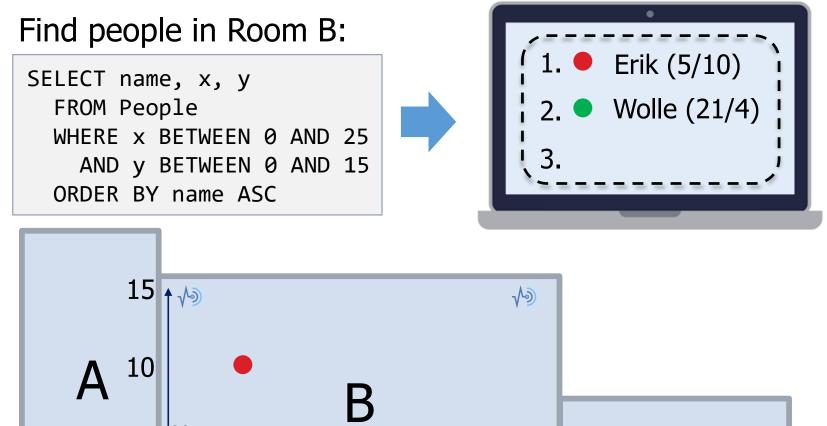
Similar processing for:

- Triggers
- ECA rules
- → Potential *bottlenecks*:
- Number of queries/triggers/rules
- Write throughput
- Complexity

EVOLVING DOMAINS Data Stream Management

Push-Based Access For Evolving Domains

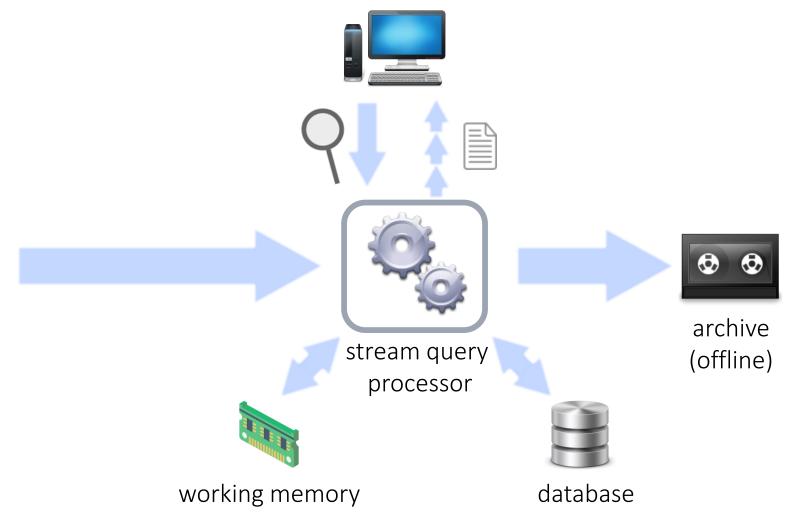
Continuous Queries Over Data Streams



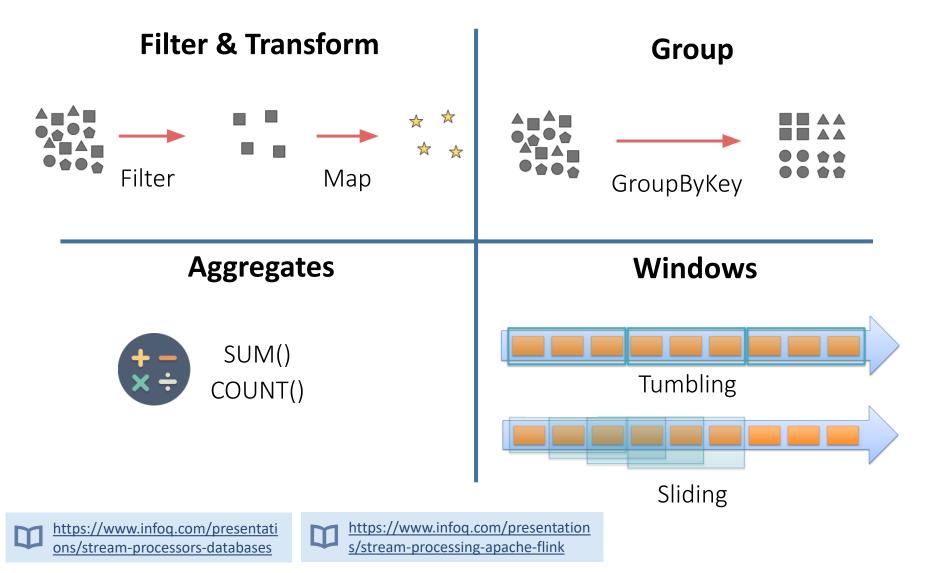
Х

Data Stream Management Systems

High-Level Architecture



Typical Stream Operators Examples



Complex Event Processing

Detecting Patterns

- Abstraction from raw event streams
- Detection of relationships between events
- Often modeled in abstraction hierarchies
- Techniques:
 - Transformation, filtering
 - Correlation, aggregation, ...
 - Pattern detection
 - \rightarrow composite events

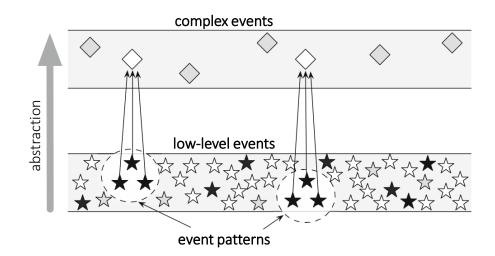


Illustration taken from: Bruns, R. & Dunkel, J, Complex Event Processing: Komplexe Analyse von massiven Datenströmen mit CEP (2015). Springer Vieweg, 2015

Notions of Time

Arrival Time vs. Event Time

- Arrival time: When was the event <u>received</u>?
- Event time: When did the event <u>occur</u>?
- **Clock Skew**: difference between arrival and event time

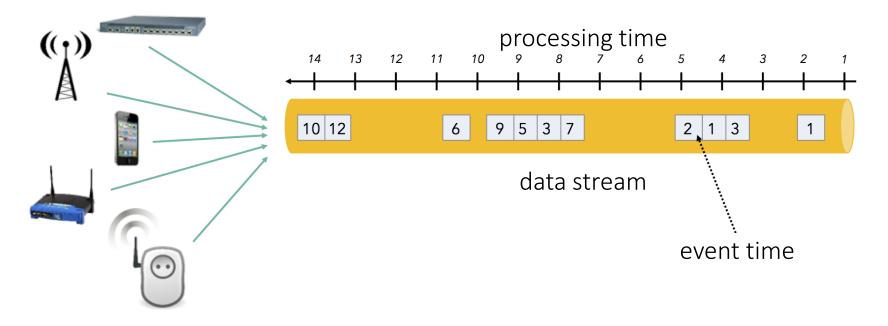
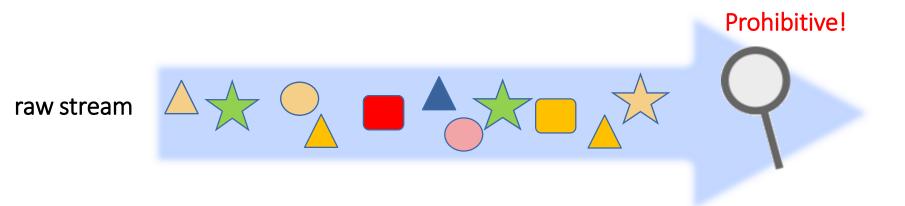


Illustration take from: Stephan Ewen, *How Apache Flink™ Enables New Streaming Applications, Part 1* (2015) <u>https://data-artisans.com/blog/how-apache-flink-enables-new-streaming-applications-part-1</u> (2018-03-16)

Approximation & Load Shedding

Provide the "Best" Answer While Avoiding to Fall Behind

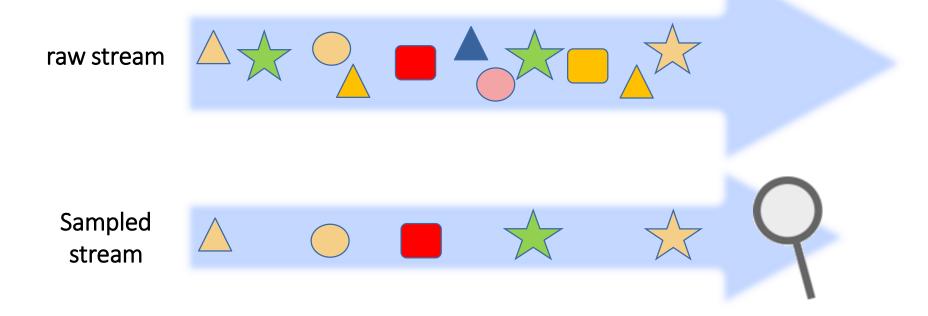


Approximation & Load Shedding

Provide the "Best" Answer While Avoiding to Fall Behind

Sampling: can be optimized for different things, e.g.

- Position stream (e.g. "select every 10th item")
- Value (e.g. hash partitioning)
- Semantic criteria



	Database	Stream
Update rate	Low	High, bursty
Primitive	Persistent collections	Transient streams
Temporal scope	Historical	Windowed
Access	random	sequential
Queries	One-time	Continuous
Query Plans	Static	Dynamic
Precision	Accurate	Approximate

Outline

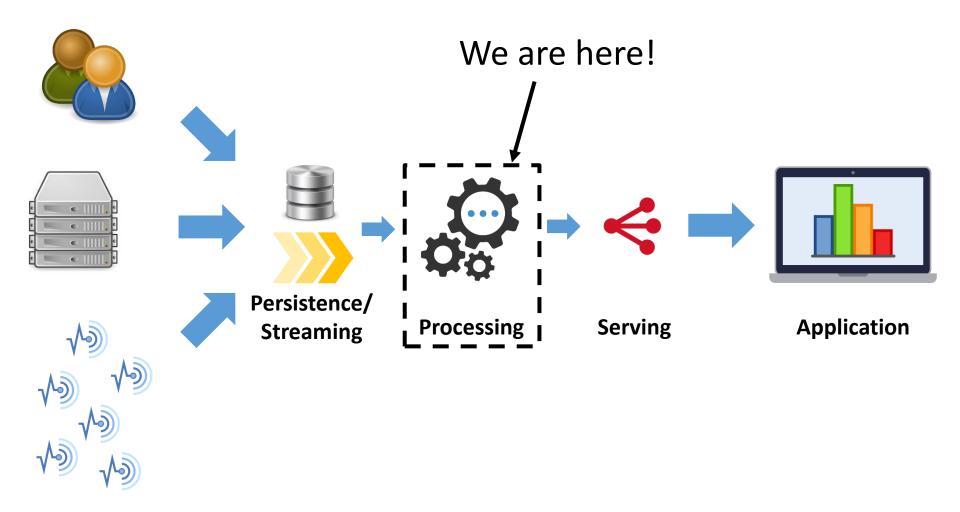
Introduction Where From? Where To?

Future Directions Current Research & Outlook

- Big Picture:
 - Processing Pipelines
 - Stream vs. Batch
 - Lambda vs. Kappa Architecture
- System Survey:
 - Storm/Trident
 - Samza
 - Spark Streaming
 - Flink
- Discussion:
 - Comparison Matrix
 - Other Systems

OVERVIEW Scalable Data Processing

A Data Processing Pipeline

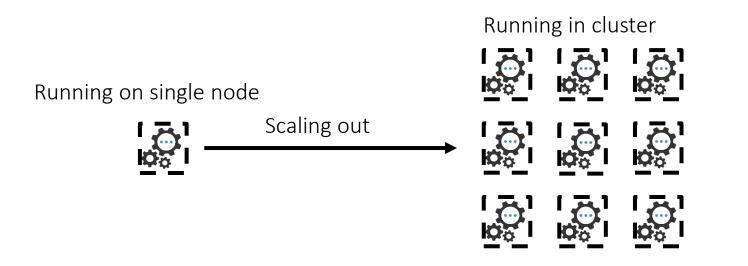


Data Processing Frameworks

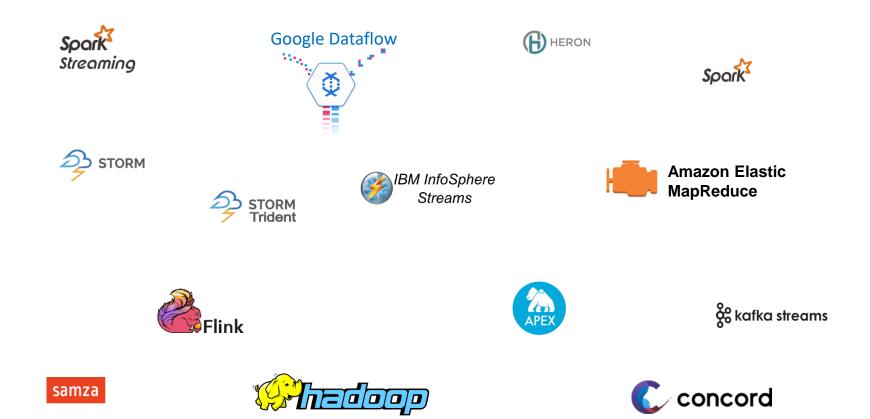
Scale-Out Made Feasible

Data processing frameworks hide complexities of scaling, e.g.:

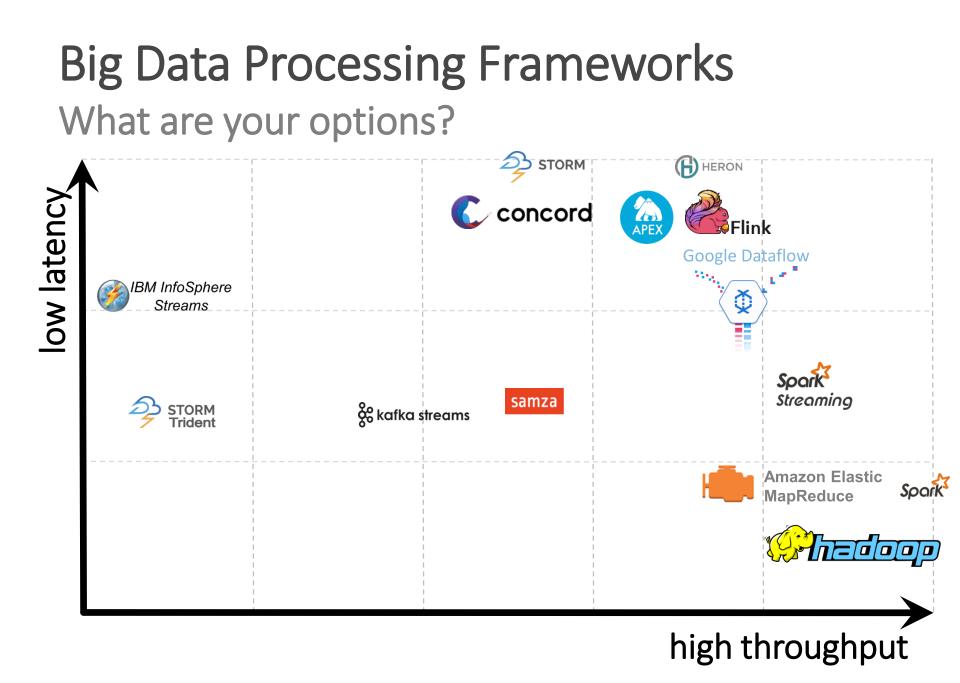
- **Deployment -** code distribution, starting/stopping work
- Monitoring health checks, application stats
- Scheduling assigning work, rebalancing
- Fault-tolerance restarting workers, rescheduling failed work



Big Data Processing Frameworks What are your options?



Big Data Processing Frameworks What are your options?

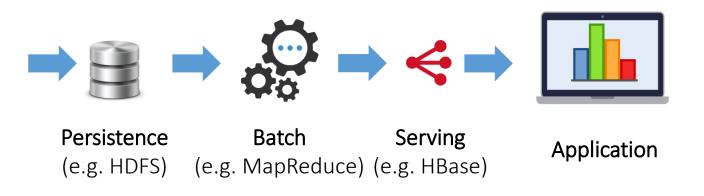


CONCEPTS Batch vs. Stream Processing

Batch Processing

"Volume"

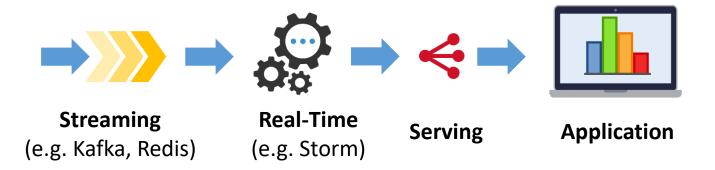
- **Cost-effective** & Efficient
- **Easy to reason about**: operating on complete data But:
- **High latency**: periodic jobs (e.g. during night times)



Stream Processing

"Velocity"

- Low end-to-end latency
- Challenges:
 - Long-running jobs no downtime allowed
 - Asynchronism data may arrive delayed or out-of-order
 - Incomplete input algorithms operate on partial data
 - More: fault-tolerance, state management, guarantees, ...



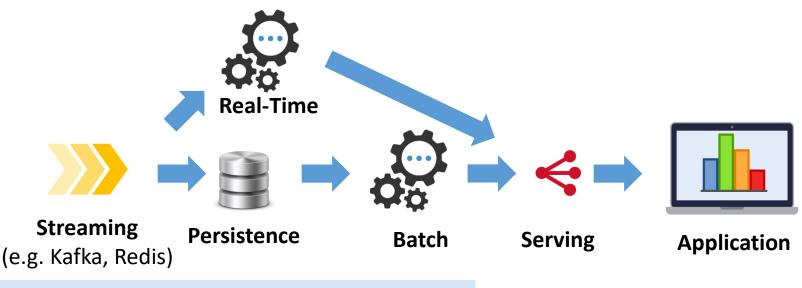
Lambda Architecture

 $\mathsf{Batch}(\mathsf{D}_{\mathsf{old}}) + \mathsf{Stream}(\mathsf{D}_{\Delta\mathsf{now}}) \approx \mathsf{Batch}(\mathsf{D}_{\mathsf{all}})$

- **Fast** output (real-time)
- Data retention + reprocessing (batch)

 \rightarrow **"eventually accurate"** merged views of real-time & batch Typical setups: Hadoop + Storm (\rightarrow Summingbird), Spark, Flink

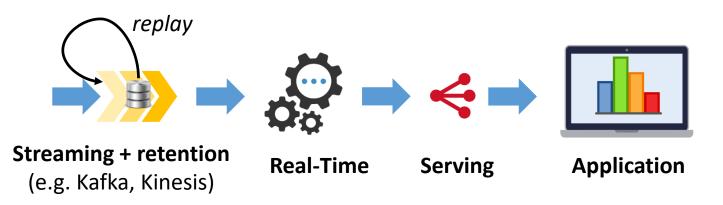
• High complexity 2 code bases & 2 deployments



Nathan Marz, How to beat the CAP theorem (2011) http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Kappa Architecture Stream(D_{all}) = Batch(D_{all})

- Simpler than Lambda Architecture
- Data retention for history
- Reasons against Kappa:
 - Existing legacy batch system
 - Special tools only for a particular batch processor
 - Only **incremental** algorithms



Data Processing

Wrap-up

Processing frameworks abstract from scaling issues

Batch processing

- easy to reason about
- extremely efficient
- huge input-output latency

Stream processing

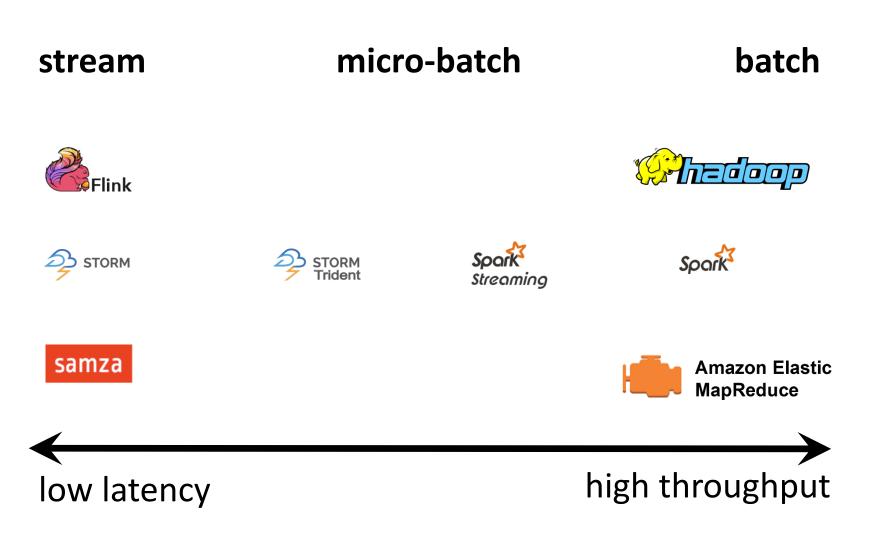
- quick results
- purely incremental
- potentially complex to handle
- Lambda Architecture: batch + stream processing
- Kappa Architecture: stream-only processing

SURVEY

Popular Stream Processing Systems

Processing Models

Batch vs. Micro-Batch vs. Stream



Storm "Hadoop of real-time"

Overview

- First production-ready, well-adopted stream processor
- **Compatible**: native Java API, Thrift, distributed RPC
- Low-level: no primitives for joins or aggregations
- Native stream processor: latency < 50 ms feasible
- **Big users**: Twitter, Yahoo!, Spotify, Baidu, Alibaba, ...

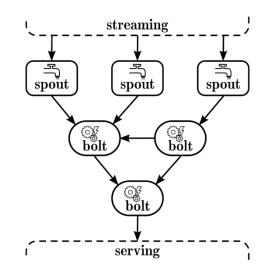
History

- **2010**: developed at BackType (acquired by Twitter)
- 2011: open-sourced
- 2014: Apache top-level project

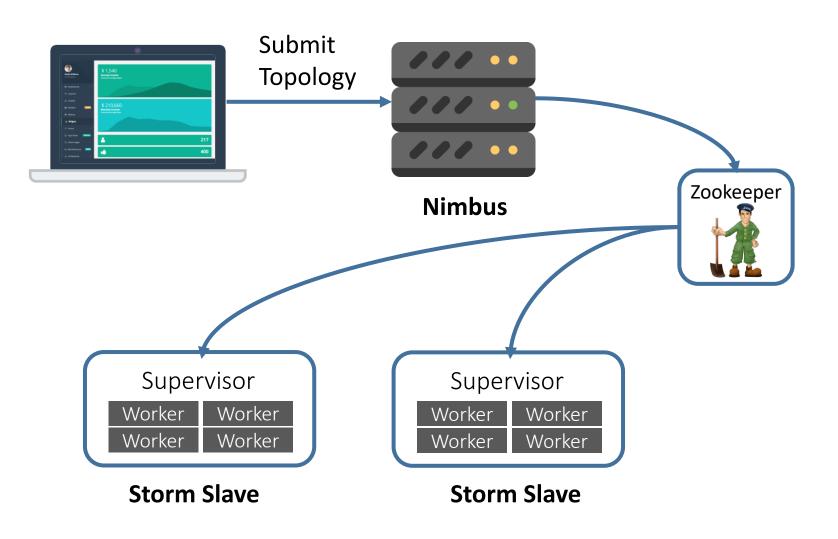
Dataflow

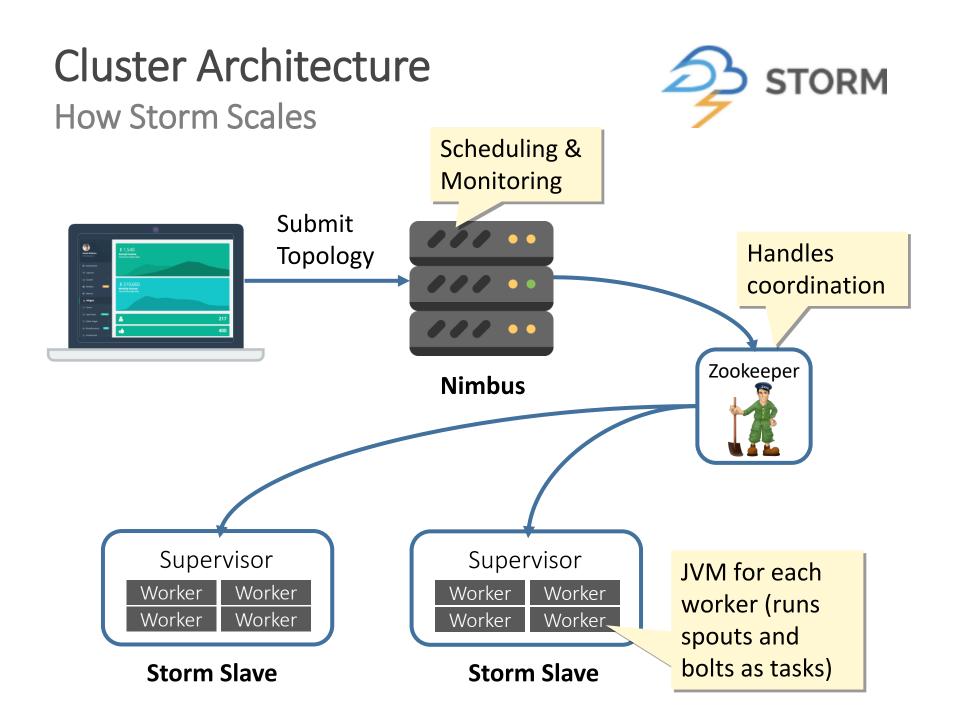
Directed Acyclic Graphs (DAG):

- Spouts: pull data into topology
- Bolts: do processing, emit data
- Asynchronous
- Lineage can be tracked for each tuple
 → At-least-once has 2x messaging
 overhead



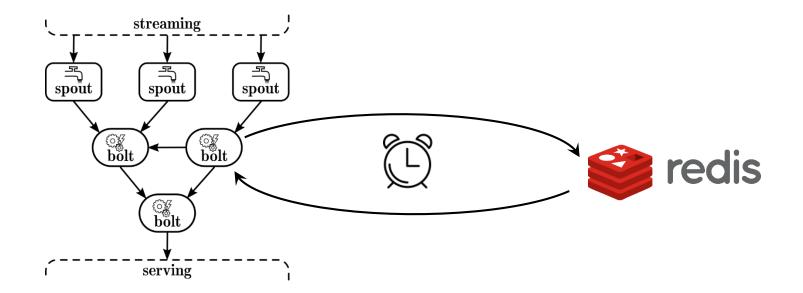
Cluster Architecture How Storm Scales

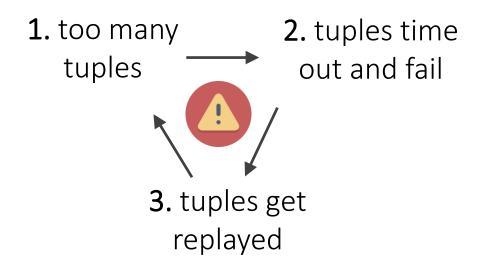




State Management Recover State on Failure

- In-memory or Redis-backed reliable state
- Synchronous state communication on the critical path
 → infeasible for large state





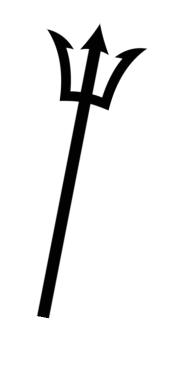
Approach: monitoring bolts' inbound buffer

- 1. Exceeding **high watermark** \rightarrow throttle!
- 2. Falling below **low watermark** \rightarrow full power!

Trident

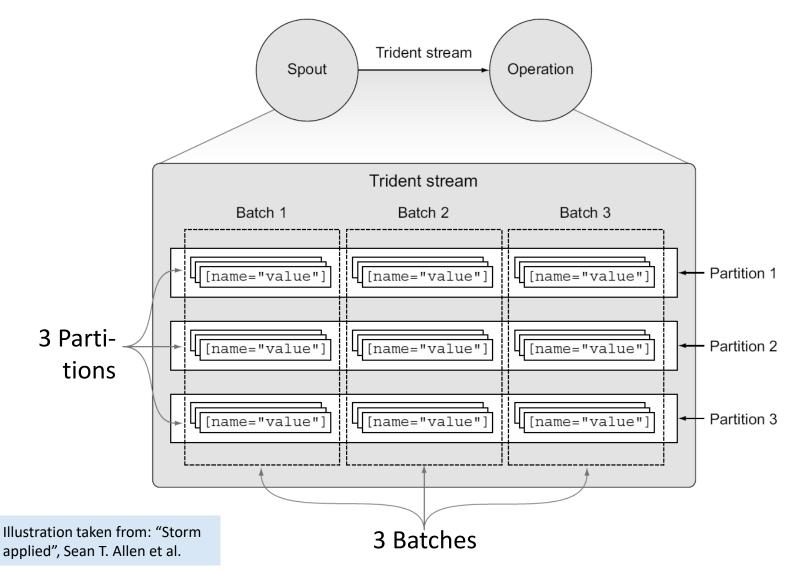
Stateful Stream Joining on Storm

- Abstraction layer on top of Storm
- Released in 2012 (Storm 0.8.0)
- Micro-batching
- New features:
 - High-level API: aggregations & joins
 - Strong ordering
 - Stateful exactly-once processing
 - \rightarrow Performance penalty



Π

Partitioned Micro-Batching



Samza

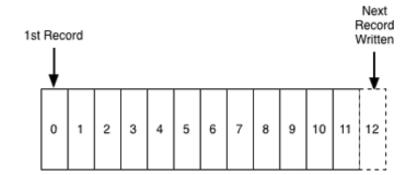
Real-Time on Top of Kafka

Overview

- Co-developed with Kafka
 → Kappa Architecture
- Simple: only single-step jobs
- Local state
- Native stream processor: low latency
- Users: LinkedIn, Uber, Netflix, TripAdvisor, Optimizely, ...

History

- Developed at LinkedIn
- 2013: open-source (Apache Incubator)
- 2015: Apache top-level project

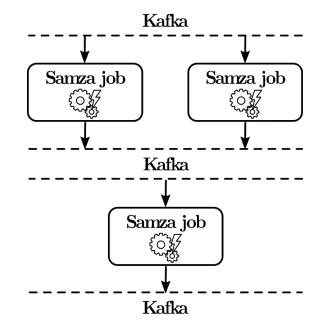


samza

Dataflow Simple By Design

samza

- Job: processing step (≈ Storm bolt)
 → Robust
 - ightarrow But: often several jobs
- Task: job instance (parallelism)
- Message: single data item
- Output persisted in Kafka
 - ightarrow Easy data sharing
 - \rightarrow Buffering (no back pressure!)
 - ightarrow But: Increased latency
- Ordering within partitions
- Task = Kafka partitions: not-elastic on purpose

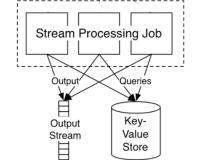


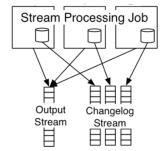
Samza Local State

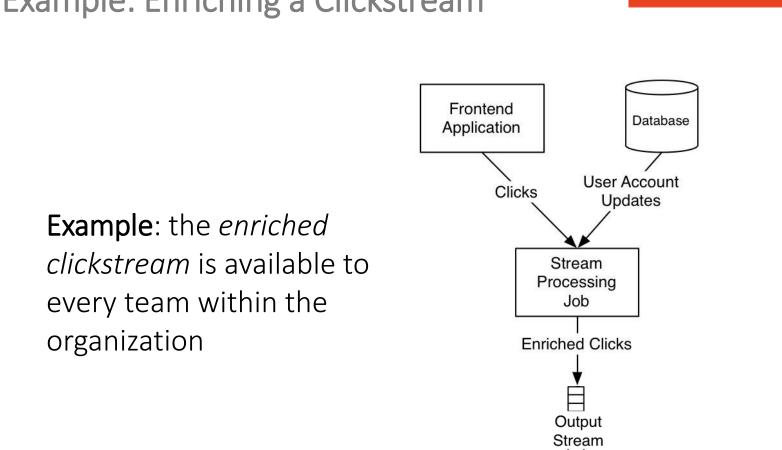
samza

Advantages of local state:

- Buffering
 - \rightarrow No back pressure
 - ightarrow At-least-once delivery
 - \rightarrow Simple recovery
- Fast lookups







samza

Dataflow **Example: Enriching a Clickstream**

Illustration taken from: Jay Kreps, Why local state is a fundamental primitive in stream processing (2014) https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing (2017-02-26)

State Management Straightforward Recovery

IT

samza

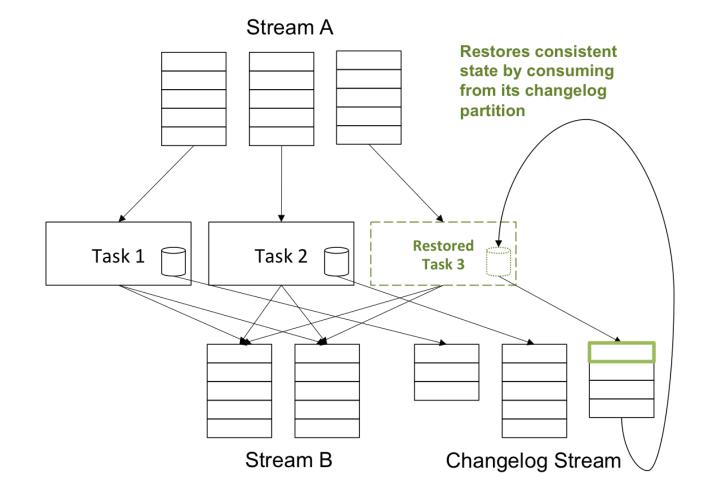
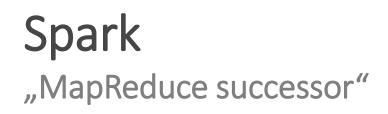
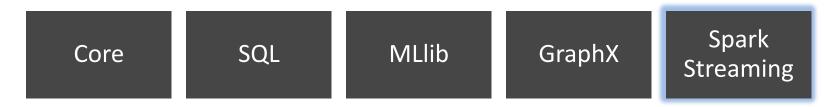


Illustration taken from: Navina Ramesh, *Apache Samza, LinkedIn's Framework for Stream Processing* (2015) <u>https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing</u> (2017-02-26)



Overview

• High-level API: immutable collections (RDDs)



- **Community**: 1000+ contributors in 2015
- **Big users**: Amazon, eBay, Yahoo!, IBM, Baidu, ...

History

- **2009**: developed at UC Berkeley
- 2010: open-sourced
- 2014: Apache top-level project

Spark Streaming

Overview

- High-level API: DStreams (~Java 8 Streams)
- Micro-Batching: seconds of latency
- Rich features: stateful, exactly-once, elastic

History

- 2011: start of development
- 2013: Spark Streaming becomes part of Spark Core

Spark Streaming Core Abstraction: DStream

Resilient Distributed Data set (RDD)

- Immutable collection & deterministic operations
- Lineage tracking:
 - \rightarrow state can be reproduced
 - ightarrow periodic checkpoints reduce recovery time

DStream: Discretized RDD

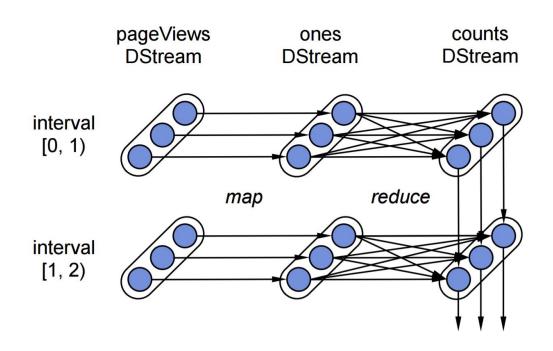
- **RDDs are processed in order**: no ordering within RDD
- RDD scheduling ~50 ms \rightarrow latency >100ms

Illustration taken from:

http://spark.apache.org/docs/latest/streaming-programming-guide.html#overview (2017-02-26)

Example Counting Page Views

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)



Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at scale." *Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles*. ACM, 2013.

Flink

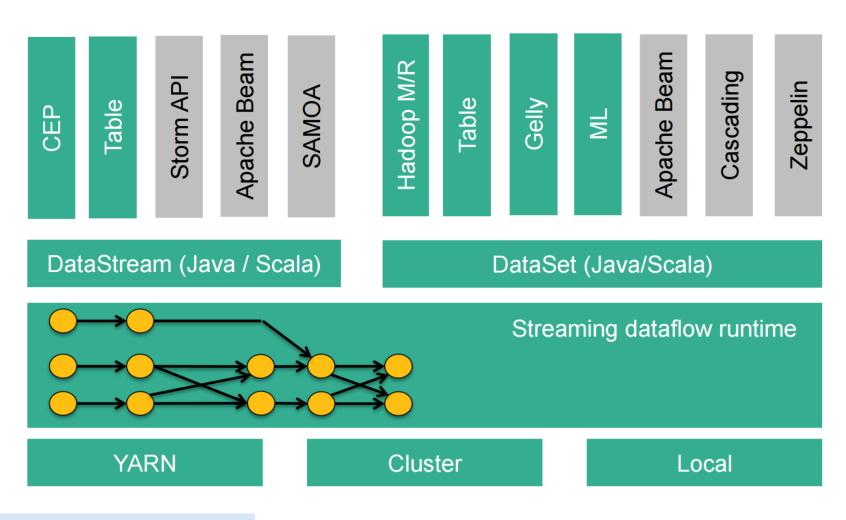
Overview

- Native stream processor: Latency <100ms feasible
- Abstract API for stream and batch processing, stateful, exactlyonce delivery
- Many libraries: Table and SQL, CEP, Machine Learning , Gelly...
- Users: Alibaba, Ericsson, Otto Group, ResearchGate, Zalando...

History

- 2010: start as Stratosphere at TU Berlin, HU Berlin, and HPI Potsdam
- 2014: Apache Incubator, project renamed to Flink
- 2015: Apache top-level project

Architecture Streaming + Batch



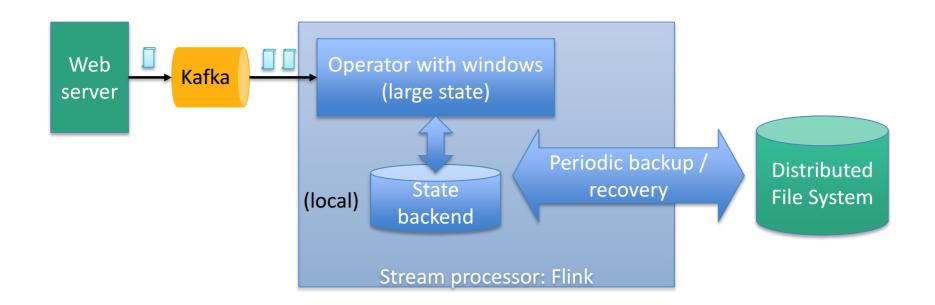
https://www.infoq.com/presentation s/stream-processing-apache-flink

Π

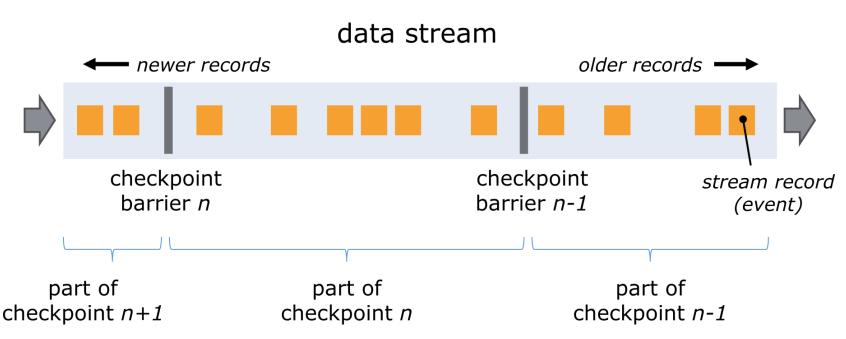
Managed State

Streaming + Batch

- Automatic **Backups** of local state
- Stored in RocksDB, Savepoints written to HDFS



Highlight: Fault Tolerance Distributed Snapshots



Exactly-once

https://ci.apache.org/projects/flink/flink-docs-release-1.2/internals/stream checkpointing.html (2017-02-26)

Illustration taken from:

- Ordering within stream partitions
- Periodic checkpoints
- Recovery:
 - 1. reset state to checkpoint
 - 2. replay data from there

WRAP UP

Side-by-side comparison

Comparison

	Storm	Trident	Samza	Spark Streaming	Flink (streaming)
Strictest Guarantee	at-least- once	exactly- once	at-least- once	exactly-once	exactly-once
Achievable Latency	≪100 ms	<100 ms	<100 ms	<1 second	<100 ms
State Management	(small state)	(small state)	\checkmark	\checkmark	\checkmark
Processing Model	one-at-a- time	micro-batch	one-at-a- time	micro-batch	one-at-a- time
Backpressure	\checkmark	\checkmark	no (buffering)	\checkmark	\checkmark
Ordering	×	between batches	within partitions	between batches	within partitions
Elasticity	\checkmark	\checkmark	×	\checkmark	×

Performance

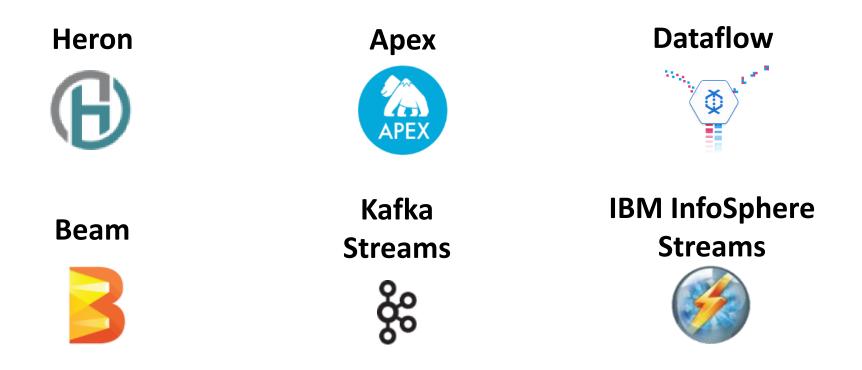
Yahoo! Benchmark

- Based on **real use case**:
 - Filter and count ad impressions
 - 10 minute windows

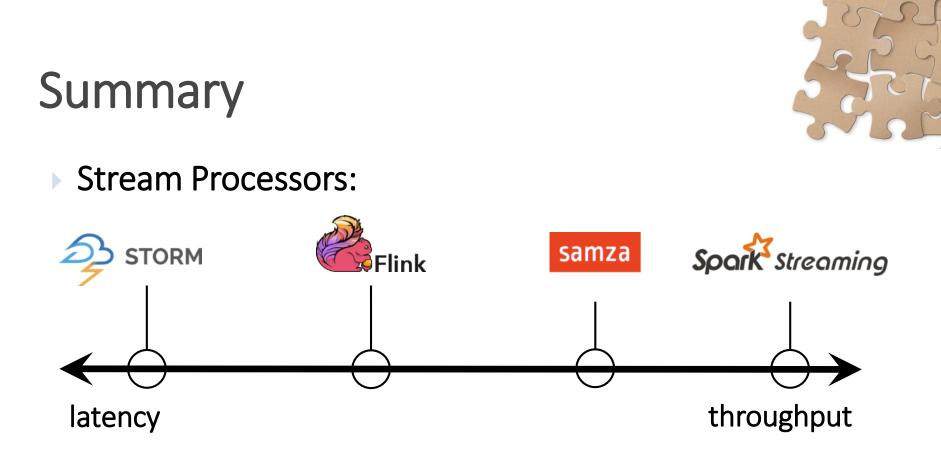
"Storm [...] and Flink [...] show sub-second latencies at relatively high throughputs with Storm having the lowest 99th percentile latency. Spark streaming [...] supports high throughputs, but at a relatively higher latency."

> From https://yahooeng.tumblr.com/post/135321837876/ benchmarking-streaming-computation-engines-at

Other Systems



And even more: Kinesis, Gearpump, MillWheel, Muppet, S4, Photon, ...



Many Dimensions of Interest: consistency guarantees, state management, backpressure, ordering, elasticity, ...

Outline

Introduction Where From? Where To?

Q.o	Stream Processing				
Q	Big Data + Low Latency				

Future Directions Current Research & Outlook

- Big Picture:
 - Why Push-Based
 Database Queries?
 - Where Do Real-Time Databases Fit in?
- System Survey:
 - Meteor
 - RethinkDB
 - Parse
 - Firebase
- Discussion:
 - Comparison Matrix
 - Other Systems

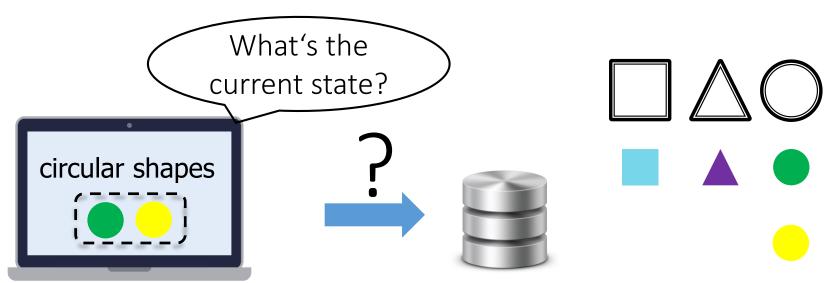
REAL-TIME DBS Making Databases Push-Based

THE ST

DE30 x cam

GEPUSD M15 1.45053 1.00 1.4508 SUTP M

Traditional Database Access No Request? No Data!

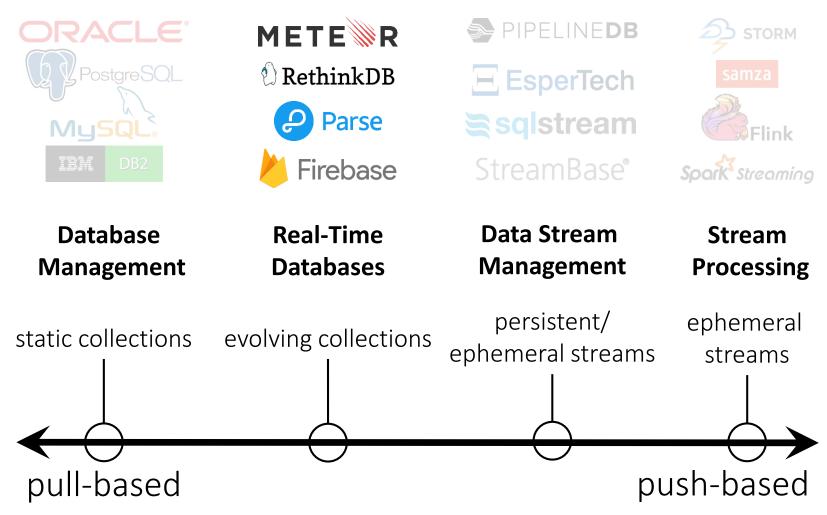


Query maintenance: periodic polling → Inefficient

 \rightarrow Slow

Quick Comparison

DBMS vs. RT DB vs. DSMS vs. Stream Processing



REAL-TIME DBS System Survey

6

22

25 111

Meteor

Overview:

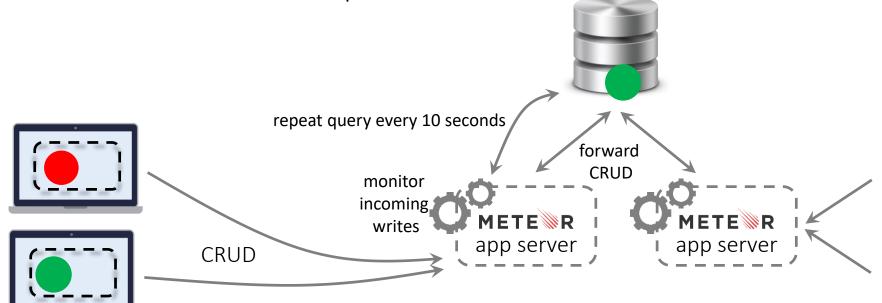
- JavaScript Framework for interactive apps and websites
 - MongoDB under the hood
 - **Real-time** result updates, full MongoDB expressiveness
- Open-source: MIT license
- **Managed service**: Galaxy (Platform-as-a-Service)

History:

- 2011: Skybreak is announced
- 2012: Skybreak is renamed to Meteor
- 2015: Managed hosting service Galaxy is announced

Live Queries Poll-and-Diff

- Change monitoring: app servers detect relevant changes
 → incomplete in multi-server deployment
- Poll-and-diff: queries are re-executed periodically
 - ightarrow staleness window
 - ightarrow does not scale with queries

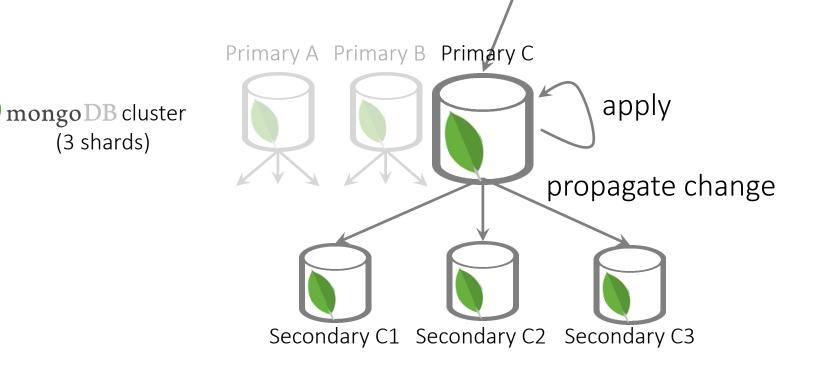


Oplog Tailing

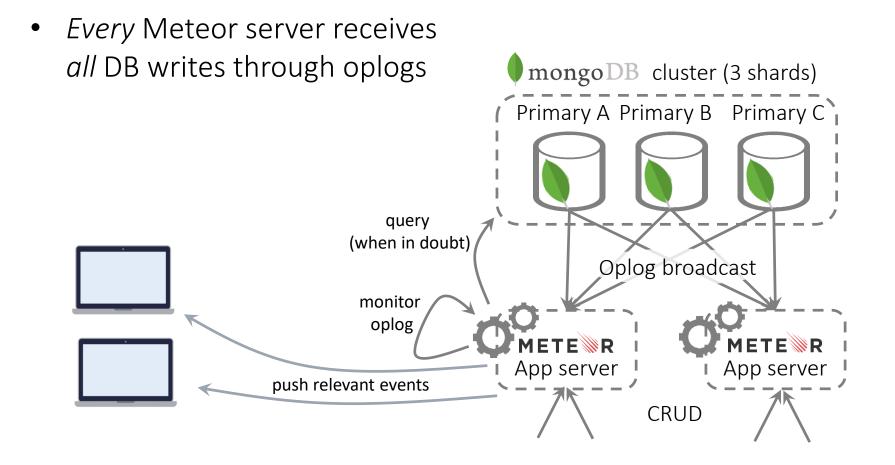
Basics: MongoDB Replication

- METE
- **Oplog**: rolling record of data modifications
- Master-slave replication: Secondaries subscribe to oplog

write operation



Oplog Tailing Tapping into the Oplog



Oplog Tailing Oplog Info is Incomplete

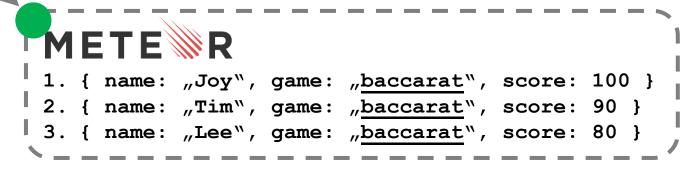
What game does Bobby play?

 \rightarrow if baccarat, he takes first place!

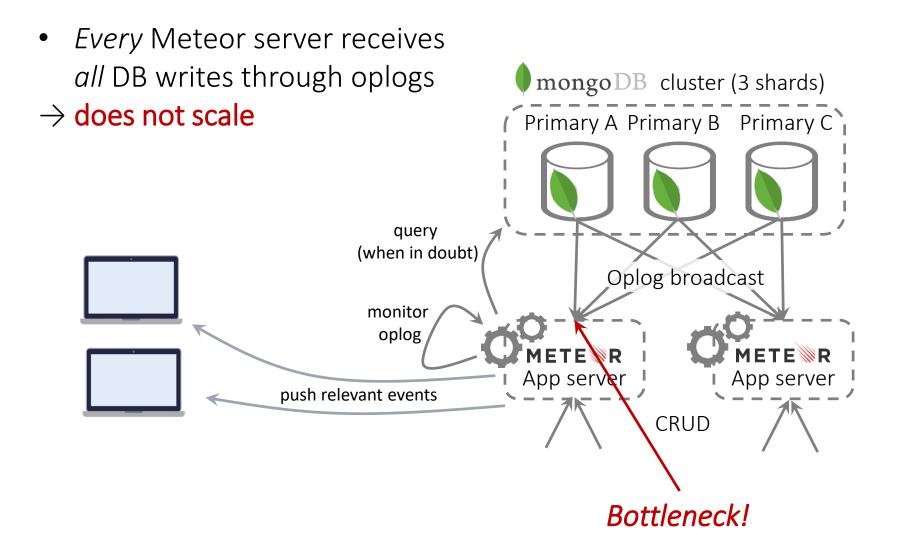
 \rightarrow if something else, nothing changes!

<u>Partial</u> update from oplog: { name: "Bobby", score: 500 } // game: ???

Baccarat players sorted by high-score



Oplog Tailing Tapping into the Oplog



RethinkDB

Overview:

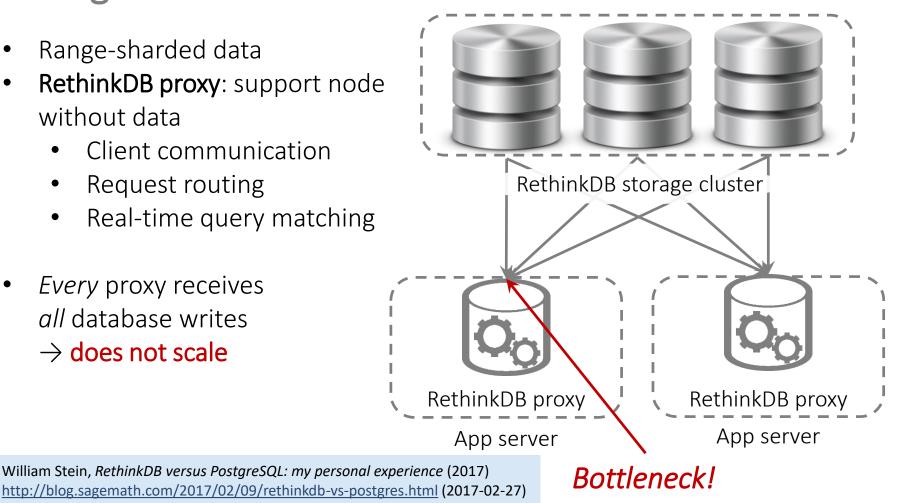
- **"MongoDB done right"**: comparable queries and data model, but also:
 - Push-based queries (filters only)
 - Joins (non-streaming)
 - Strong consistency: linearizability
- JavaScript SDK (Horizon): open-source, as managed service
- **Open-source**: Apache 2.0 license

History:

- 2009: RethinkDB is founded
- 2012: RethinkDB is open-sourced under AGPL
- 2016, May: first official release of Horizon (JavaScript SDK)
- 2016, October: RethinkDB announces shutdown
- 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB 🕑 RethinkDB **Changefeed Architecture**

- Range-sharded data
- RethinkDB proxy: support node without data
 - Client communication
 - **Request routing**
 - Real-time query matching
- *Every* proxy receives all database writes \rightarrow does not scale



Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016) https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Parse

Overview:

- Backend-as-a-Service for mobile apps
 - MongoDB: largest deployment world-wide
 - Easy development: great docs, push notifications, authentication, ...
 - **Real-time** updates for most MongoDB queries
- **Open-source**: BSD license
- Managed service: discontinued

History:

- 2011: Parse is founded
- 2013: Parse is acquired by Facebook
- 2015: more than 500,000 mobile apps reported on Parse
- 2016, January: Parse shutdown is announced
- 2016, March: Live Queries are announced
- 2017: Parse shutdown is finalized

LiveQuery Architecture

- LiveQuery Server: no data, real-time query matching
- *Every* LiveQuery Server receives *all* database writes

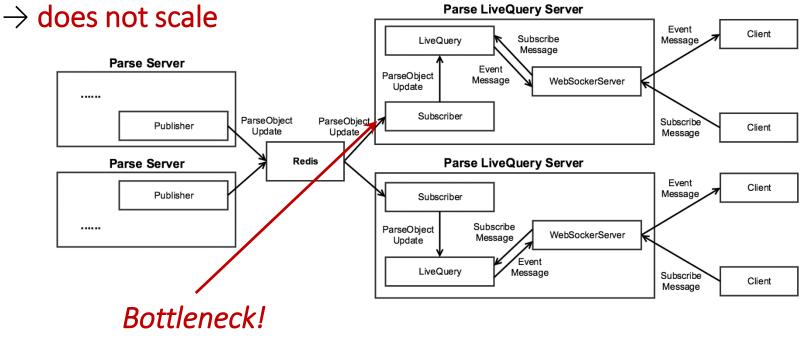


Illustration taken from:

http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

Overview:

- Real-time state synchronization across devices
- Simplistic data model: nested hierarchy of lists and objects
- Simplistic queries: mostly navigation/filtering
- Fully managed, proprietary
- App SDK for App development, mobile-first
- Google services integration: analytics, hosting, authorization, ...

History:

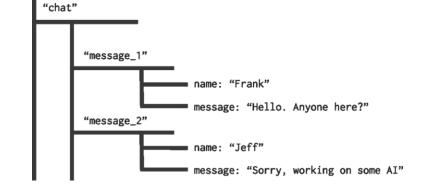
- 2011: chat service startup Envolve is founded
 → was often used for cross-device state synchronization
 → state synchronization is separated (Firebase)
- 2012: Firebase is founded
- 2013: Firebase is acquired by Google
- 2017, October: Firestore is released

- Tree data model: application state ~ JSON object
- Subtree synching: push notifications for specific keys only
 → Flat structure for fine granularity

Illustration taken from: Frank van Puffelen, *Have you met the Realtime Database? (2016)* https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

Query Processing in the Client

- Push notifications for **specific keys** only
 - Order by a single attribute
 - Apply a single filter on that attribute
- Non-trivial query processing in client
 → does not scale!



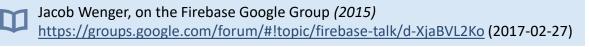


Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016) <u>https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html</u> (2017-02-27)

Firebase Hard Scaling Limits

"Scale to around **100,000 concurrent connections** and **<u>1,000 writes/second</u>** in a single database. Scaling beyond that requires sharding your data across multiple databases."</u>

Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018) <u>https://firebase.google.com/docs/database/rtdb-vs-firestore</u> (2018-03-10)

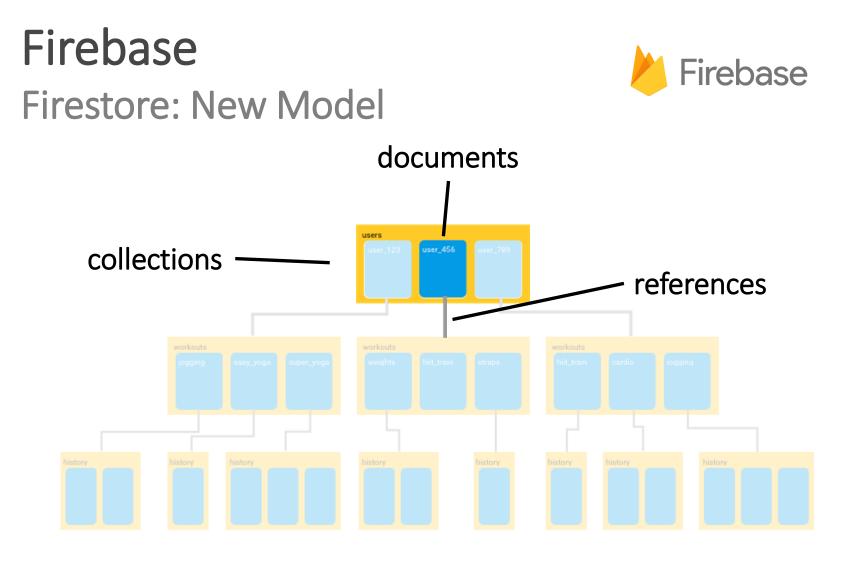


Illustration taken from: Todd Kerpelman, *Cloud Firestore for Realtime Database Developers (2017)* <u>https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html</u> (2018-03-10)

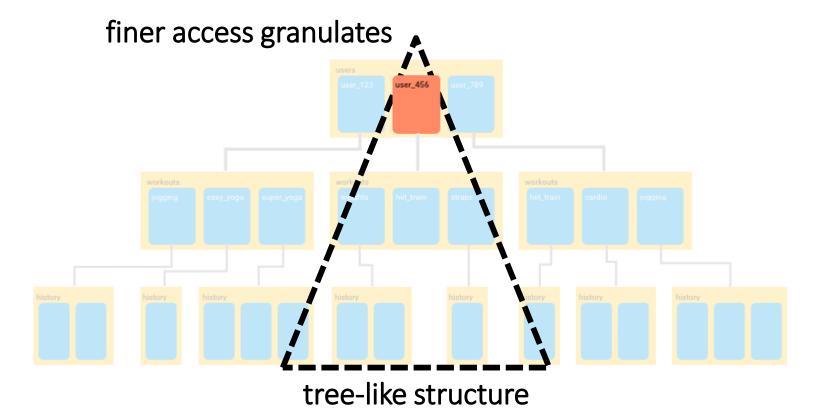


Illustration taken from: Todd Kerpelman, *Cloud Firestore for Realtime Database Developers (2017)* <u>https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html</u> (2018-03-10)

Firebase

Firestore: Summary

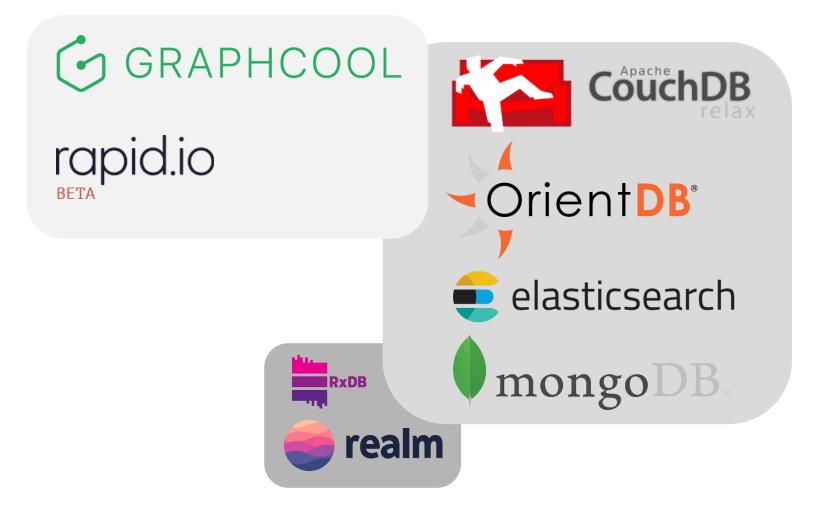
- More specific data selection
- Logical AND for some filter combinations

... But:

- Still Limited Expressiveness
 - No logical OR
 - No logical AND for many filter combinations
 - No content-based search (regex, full-text search)
- Still Limited Write Throughput:
 - <u>500</u> writes/s per collection
 - <u>1</u> writes/s per document

Honorable Mentions

Other Systems With Real-Time Features



REAL-TIME DBS

Summary & Discussion

Wrap-Up Direct Comparison

		ER		nkDB Pr	rse	Bade
		AETER	Rethi	6 8 pe	¥ Fire	Bal
		t eor Oplog Tailing	RethinkDB	Parse	Firebase	Baqend
Scales with write TP	\checkmark	×	×	×	×	\checkmark
Scales with no. of queries	×	\checkmark	✓	\checkmark	? (100k connections)	\checkmark
Composite queries (AND/OR)	\checkmark	\checkmark	✓	\checkmark	(AND In Firestore)	\checkmark
Sorted queries	\checkmark	\checkmark	\checkmark	×	(single attribute)	\checkmark
Limit	\checkmark	\checkmark	~	×	 ✓ 	\checkmark
Offset	\checkmark	\checkmark	×	×	(value-based)	\checkmark

Summary

Real-Time Databases: Major challenges

- Handle increasing throughput
- Handle additional queries

Expressiveness:

- Content-based search? Composite filters?
- Ordering? Limit? Offset?

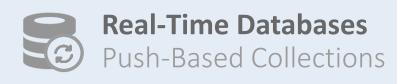
រីអ្នំ Legacy Support:

- Real-time queries for *existing databases*?
- Decouple OLTP from real-time workloads?

Outline

Introduction Where From? Where To?

Ö.o	Stream Processing					
Q	Big Data + Low Latency					



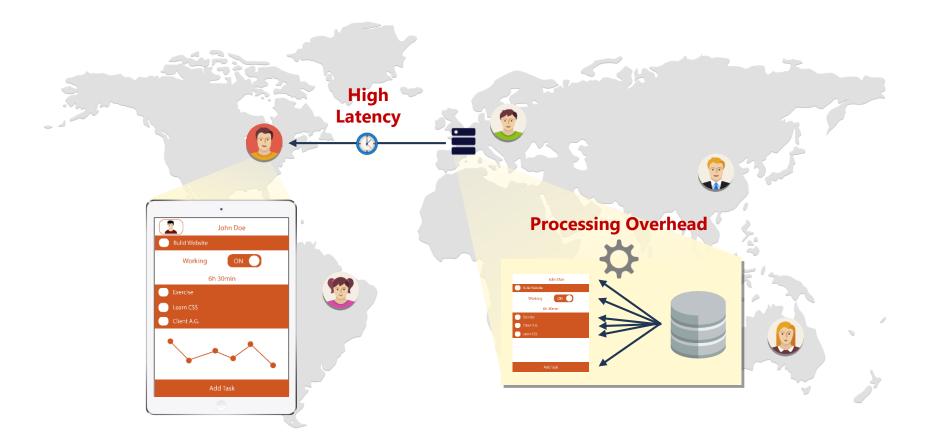
Future Directions Current Research & Outlook

- Caching Dynamic Data:
 - Why is the Web Slow?
 - Caching to the Rescue!
 - Query Caching
- Real-Time Queries:
 - Scalability
 - Expressiveness
 - Legacy Compatibility
 - Use Cases
- Open Challenges:
 - TTLs & Transactions
 - Polyglot Persistence
- Summary

OUTLOOK Our Research at the University of Hamburg

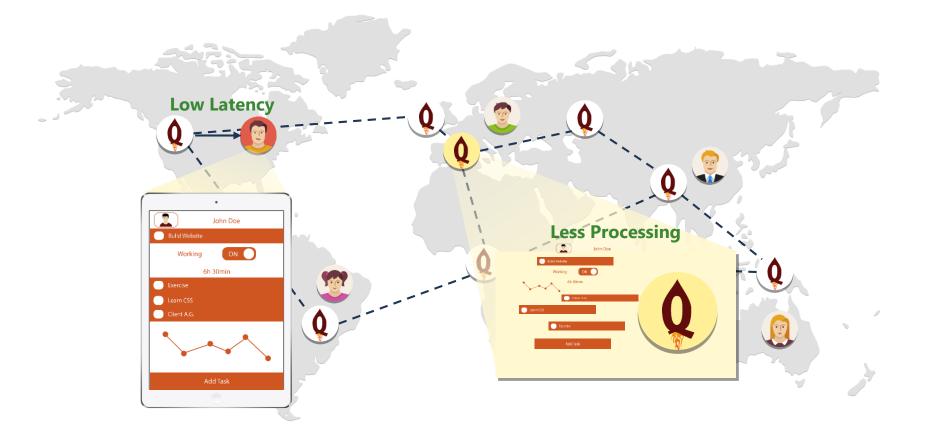
Problem: Slow Websites

Two Bottlenecks: Latency and Processing



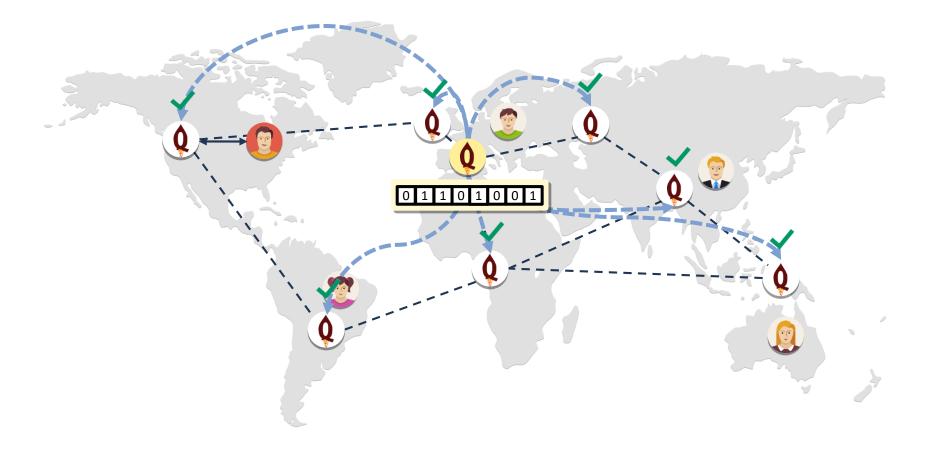
Solution: Global Caching

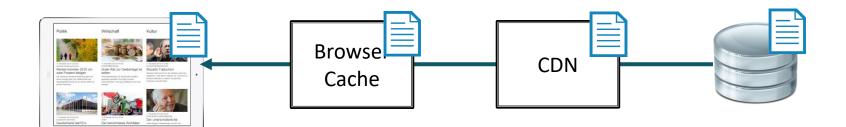
Fresh Data From Distributed Web Caches

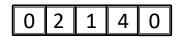


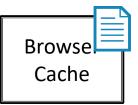
New Caching Algorithms

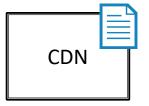
Solve Consistency Problem

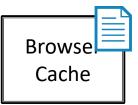


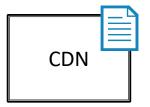


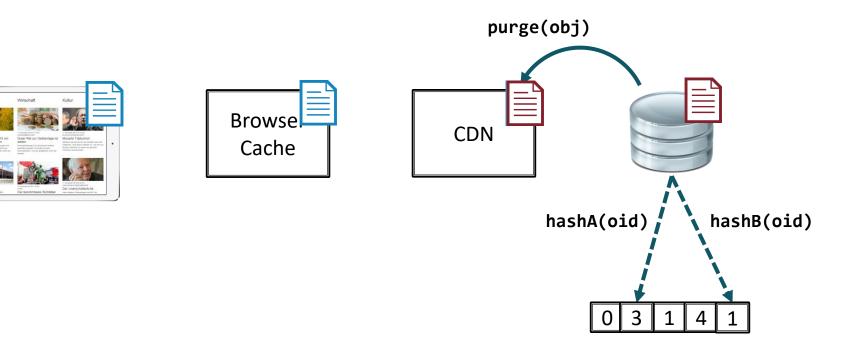


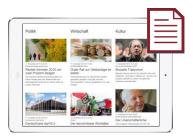


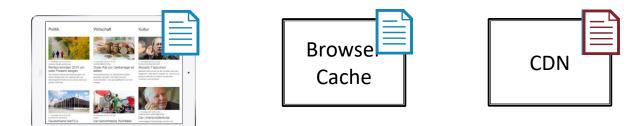


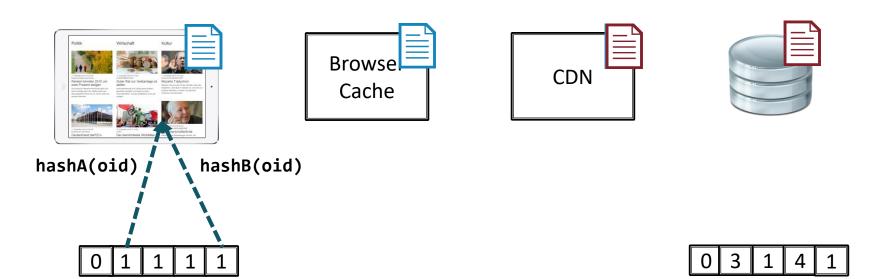


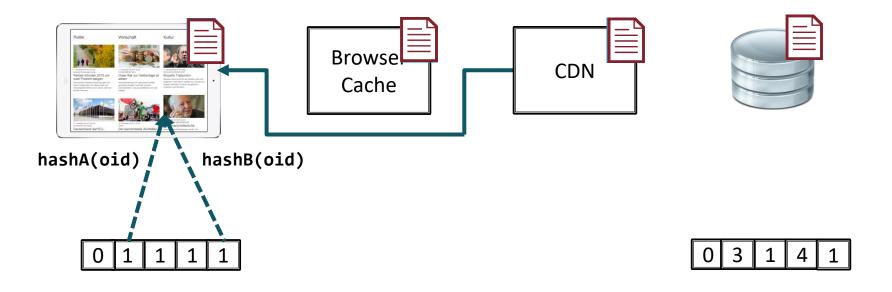


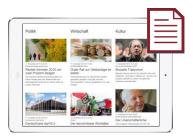


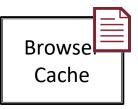


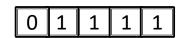


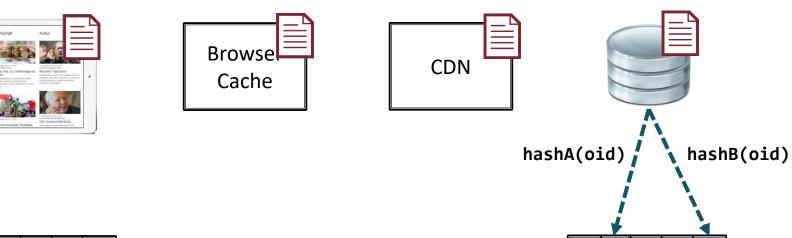












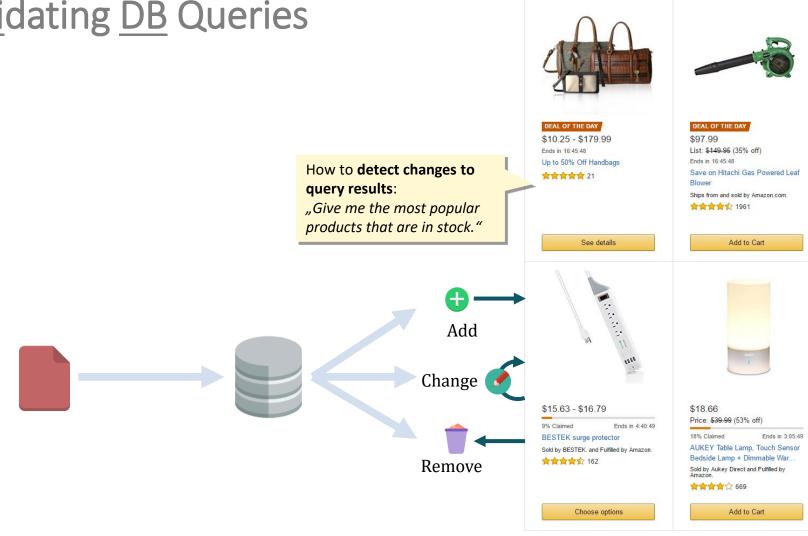
Consistent Web Caching

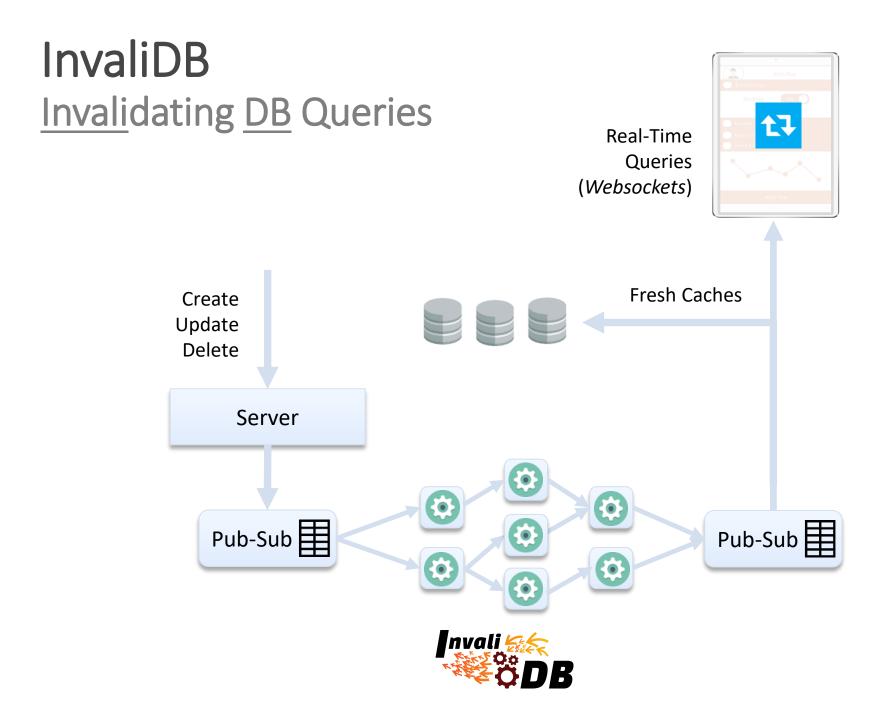
With 20.000 distinct updates and 5% error rate: 11 KByte hashA(oid) 0 1 1 1 1

Consistent Web Caching

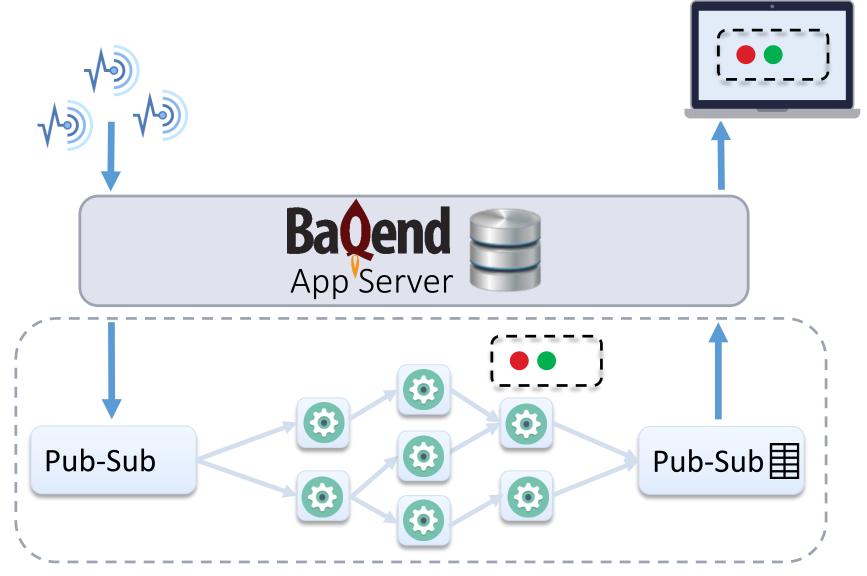
How to <u>Invali</u>date <u>DB</u> Query Results?

InvaliDB Invalidating DB Queries

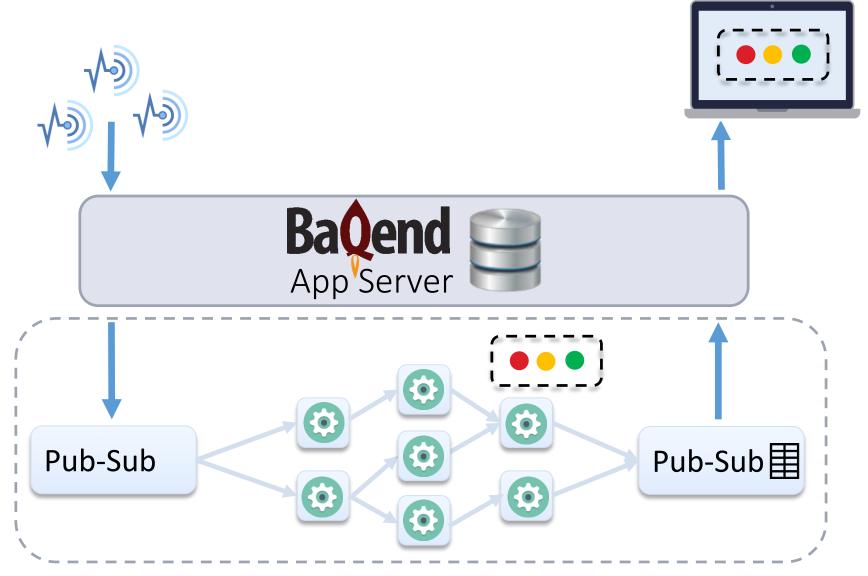




Baqend Real-Time Queries Realtime Decoupled



Baqend Real-Time Queries Realtime Decoupled

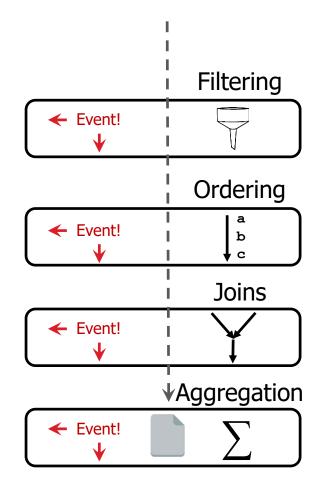


Baqend Real-Time Queries Realtime Decoupled

Baqend Real-Time Queries Staged Real-Time Query Processing

Change notifications go through different query processing stages:

- **1. Filter queries**: track matching status \rightarrow *before* and after-images
- 2. Sorted queries: maintain result order
- 3. Joins: combine maintained results
- 4. Aggregations: maintain aggregations



Baqend Real-Time Queries Filter Queries: Distributed Query Matching

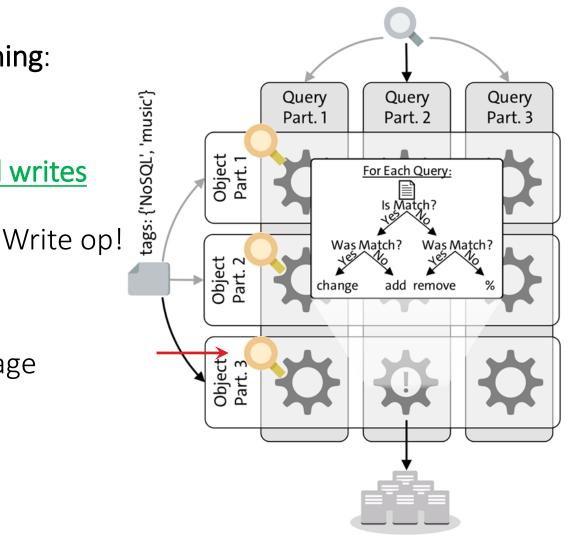
SELECT * FROM posts WHERE tags CONTAINS 'NoSQL'

Two-dimensional partitioning:

- by Query
- by Object
- \rightarrow scales with queries <u>and writes</u>

Implementation:

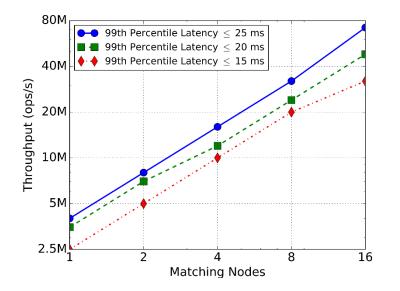
- Apache Storm
- Topology in Java
- MongoDB query language
- Pluggable query engine
- \rightarrow legacy-compatible

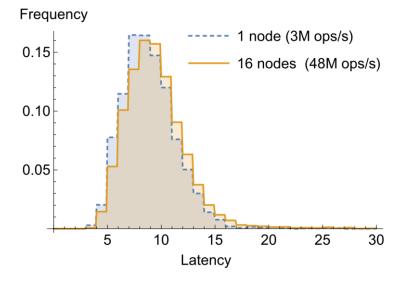


Baqend Real-Time Queries Low Latency + Linear Scalability

Linear Scalability

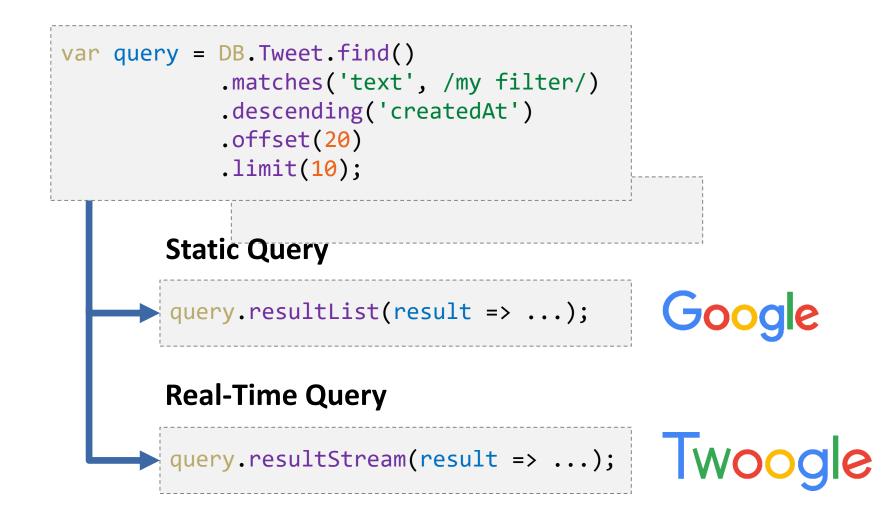
Stable Latency Distribution





Quaestor: Query Web Caching for Database-as-a-Service Providers VLDB '17

Programming Real-Time Queries JavaScript API



Twoogle

Q

à

Filter word, e.g. "http", "Java", "Baqend"

Real-Time Static

Last result update at 15:51:21 (less than a second ago)

1. Conju.re (conju_re, 3840 followers) tweeted: https://twitter.com/conju_re/status/859767327570702336

Congress Saved the Science Budget—And That's the Problem https://t.co/UdrjNidakc https://t.co/xINjpEpKZG

2. ねぼすけゆーだい (Yuuu_key, 229 followers) tweeted: https://twitter.com/Yuuu_key/status/859767323384623104

けいきさんと PENGUIN RESEARCHのけいたくん がリプのやり取りしてる...

3. Whitney Shackley (bschneids11, 5 followers) tweeted: https://twitter.com/bschneids11/status/859767319534469122

holy..... waiting for it so long Ø 💿 https://t.co/UdXcHJb7X3

4. Lisa Schmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and #scs... https://twitter.com/LisaMSchmid/status/859767317311500290

Congrats to Matthew Kent, winner of the 26th $\#\mbox{TeamSCS}$ Coding Challenge. https://t.co/vx1o0WgJrZ $\#\mbox{SCS}$ challenge

5. Brian Martin Larson (Brian_Larson, 40 followers) tweeted on #teamscs, a... https://twitter.com/Brian_Larson/status/859767317303001089

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge.

Twoogle

	Static
ast result up	date at 15:51:21 (less than a second ago)
	e (conju_re, 3840 followers) tweeted: ter.com/conju_re/status/859767327570702336
	aved the Science Budget—And That's the Problem /UdrjNidakc https://t.co/xINjpEpKZG
	ナゆーだい (Yuuukey, 229 followers) tweeted: ter.com/Yuuukey/status/859767323384623104
けいきさん	と PENGUIN RESEARCHのけいたくん がリプのやり取りしてる
	y Shackley (bschneids11, 5 followers) tweeted: ter.com/bschneids11/status/859767319534469122
holy wai	ting for it so long 🏉 💿 https://t.co/UdXcHJb7X3
	hmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and ter.com/LisaMSchmid/status/859767317311500290
	Matthew Kent, winner of the 26th #TeamSCS Coding Challenge.

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge.

Baqend Try It Out!

Platform

- Platform for building (Progressive) Web Apps
- -**15x** Performance Edge
- Faster Development

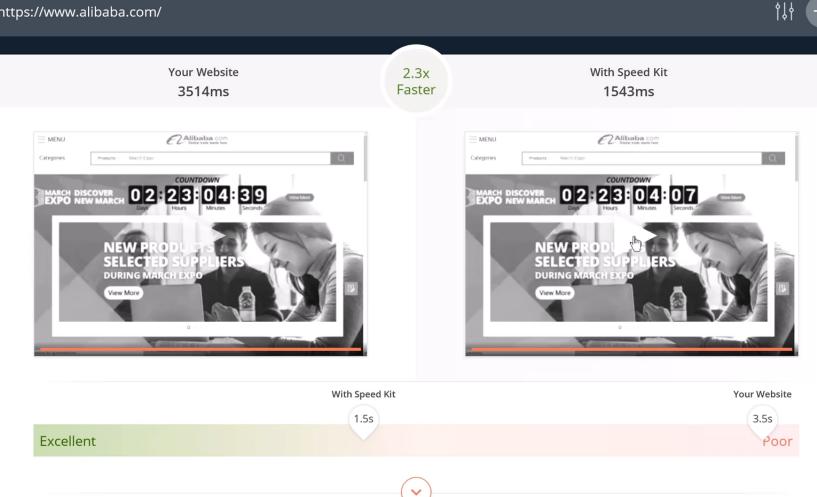
Speed Kit

- Turns Existing Sites
 into **PWAs**
- -50-300% Faster Loads
- Offline Mode

Speed Kit **Accelerate Your Website!**

https://www.alibaba.com/

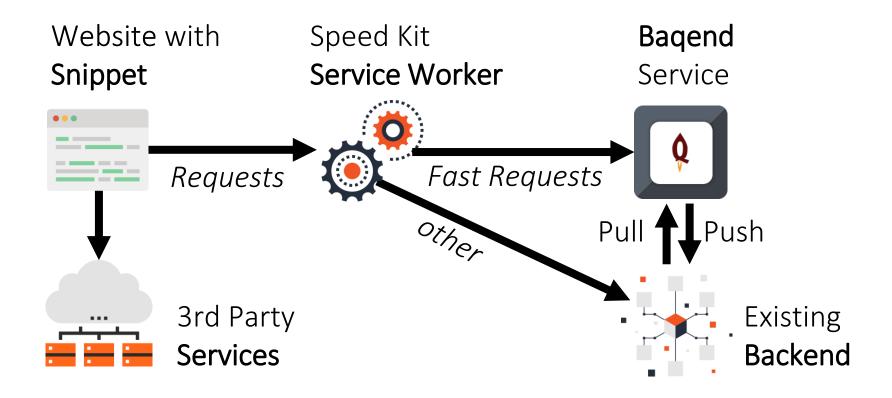
https://test.speed-kit.com/



Show Details

Speed Kit Baqend Caching for Legacy Websites

Speed Kit Baqend Caching for Legacy Websites



FUTURE DIRECTIONS

Open Challenges

TTL Estimation

Quantifying Cacheability of Dynamic Content

Setting: server assigns a caching time-to-live (TTL) to each record and query result

Problem:

- TTLs too short: Bad cache-hit rate
- TTLs too large: Bloom filter's false positive rate degrades

Approach: Collect access metrics and estimate

Objects: calculate the expected value of the time to next write (assuming a poisson process)

Queries:

- Initial estimate: estimated time until first object in result is updated
- Refinement: upon invalidation TTL is adapted towards observed TTL using an EWMA

TTL Estimation

Learning Representations

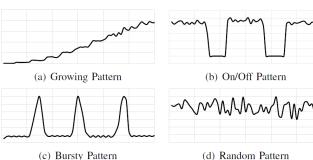
Setting: query results can either be represented as references (id-list) or full results (object-lists)

Id-Lists	Object-Lists
$\{id_1, id_2, id_3\}$	{ {id: 1, val: 'a' }, {id: 2, val: 'b' },
	{ <i>id</i> :3, <i>val</i> :' <i>c</i> '}}
Less Invalidations	Less Round-Trips

Current Approach: Cost-based decision model that weighs expected round-trips vs expected invalidations **Desired:** Adaptive agent that actively explores decisions

TTL Estimation

Open Challenge: Learning Workloads



"Backwards-oriented" (current approach):

- Mesure & use moving average or newest measurement
- Cannot react to spikes/fluctuation nor detect patterns

"Predictive online-learning":

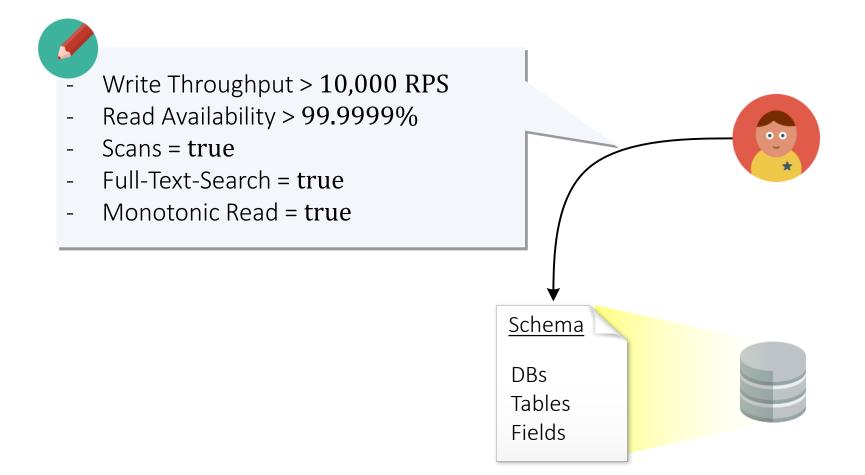
- Extrapolate using regression (e.g. linear or polynomial) or time-series models (Exponential Smoothing, AR, ARIMA, Gaussian Processes, ...)
- Resource intensive, very difficult to select & evalute model

,**Reactive**":

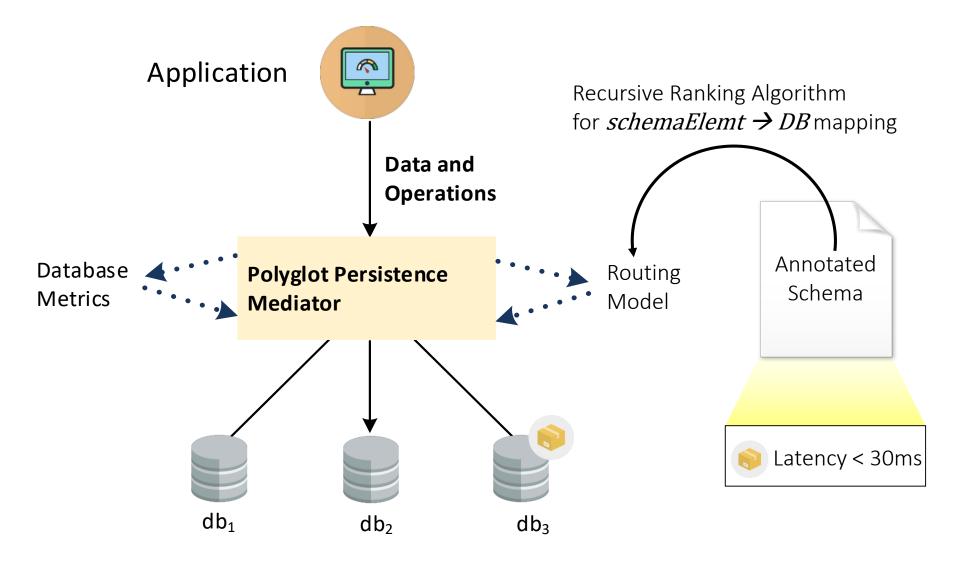
- Use Reinforcement learning to automatically explore decisions
- Rewards usually noisy, delayed or hidden (e.g. staleness)

Polyglot Persistence Mediator

Schemas can be annotated with requirements/SLAs



Polyglot Persistence Mediator Routing to the "optimal" datbase system



Polyglot Persistence Open Challenges

Meta-DBaaS: Mediate over DBaaS-systems unify SLAs

Live Migration: adapt to changing requirements

Database Selection: Actively minimize SLA violations

Utility Functions/SLAs: Capture trade-offs comprehensively

Workload Management: Adaptive Runtime Scheduling

Distributed Transactions

Transaction Abort Rates: How to mitigate high abort rates caused by long running transactions?

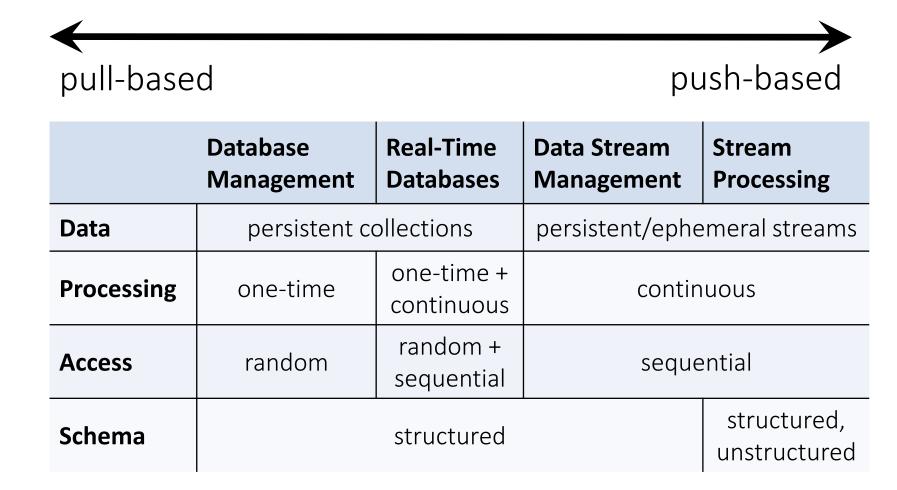
Automatic Transaction Protocol Selection: Can the optimal protocol (2PL, BOCC+, RAMP, ...) be learned and chosen at runtime?

Transactional Visibility For Real-Time Queries: How to include transactions without introducing bottlenecks?

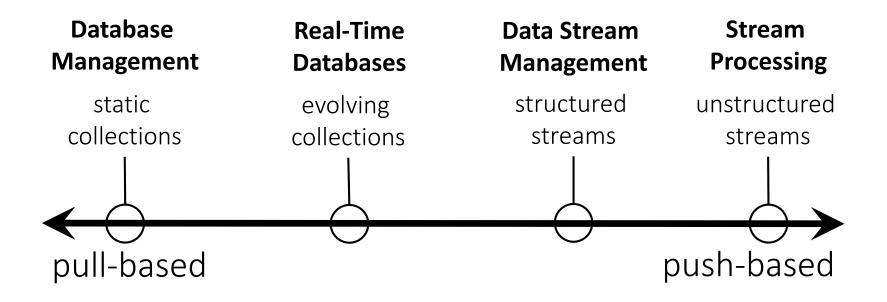
closing time

Summary

Real-Time Data Management



Summary Real-Time Data Management



NoSQL Databases: a Survey and Decision Guidance

Together with our colleagues at the University of Hamburg, we—that is <u>Felix Gessert</u>, Wolfram Wingerath, Steffen Friedrich and Norbert Ritter—presented an overview over the NoSQL landscape at <u>SummerSOC'16</u> last month. Here is the written gist. We give our best to convey the condensed NoSQL knowledge we gathered building Baqend.

NoSQL Databases: A Survey and Decision Guidance

TL;DR

Today, data is generated and consumed at unprecedented scale. This has lead to novel approaches for scalable data management subsumed under the term "NoSQL" database systems to handle the ever-increasing data volume and request loads. However, the heterogeneity and diversity of the numerous existing systems impede the well-informed selection of a data store appropriate for a given application context. Therefore, this article gives a top-down overview of the field: Instead of contrasting the implementation specifics of individual representatives, we propose a comparative classification model that relates functional and non-functional requirements to techniques and algorithms employed in NoSQL databases. This NoSQL Toolbox allows us to derive a simple decision tree to help practitioners and researchers filter potential system candidates based on central application requirements. Scalable Stream Processing: A Survey of Storm, Samza, Spark and Flink

A Survey of Storm, Samza, Spark and Flink

With this article, we would like to share our insights on real-time data processing we gained building Baqend. This is an updated version of our most recent stream processor survey which is another cooperation with the University of Hamburg (authors: Wolfram Wingerath, Felix Gessert, Steffen Friedrich and Norbert Ritter). As you may or may not have been aware of, a lot of stream processing is going on behind the curtains at Baqend. In our quest to provide the lowest-possible latency, we have built a system to enable **query caching** and **real-time notifications** (similar to *changefeeds* in RethinkDB/Horizon) and hence learned a lot about the competition in the field of stream processors.

Read them at <u>blog.baqend.com</u>!

Our Related Publications

Scientific Papers:

SPACE MAN

Quaestor: Query Web Caching for Database-as-a-Service Providers VLDB '17

NoSQL Database Systems: A Survey and Decision Guidance SummerSOC '16

Real-time stream processing for Big Data it - Information Technology 58 (2016)

MAX

The Case For Change Notifications in Pull-Based Databases BTW '17

AAA

A Real-Time Database Survey: The Architecture of Meteor, RethinkDB, Parse & Firebase

Real-time databases make it easy to implement reactive applications, because they keep your critical information upto-date. But how do they work and how do they scale? In this article, we dissect the real-time query features of Meteor, RethinkDB, Parse and Firebase to uncover scaling limitations inherent to their respective designs. We then go on to discuss and categorize related real-time systems and share our lessons learned in providing real-time queries without any bottlenecks in <u>Baqend</u>.

A Real-Time Database Survey: The Architecture of Meteor, RethinkDB, Parse & Firebase

Blog Posts:

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale Baqend Tech Blog (2017): <u>https://medium.com/p/822ff87d2f87</u>

Learn more at <u>blog.baqend.com</u>!

Thank you

{wingerath, gessert, ritter}@informatik.uni-hamburg.de

Blog: <u>blog.baqend.com</u> Slides: <u>slides.baqend.com</u>

