
The Case for Change Notifications
in Pull-Based Databases

Wolfram Wingerath
wingerath@informatik.uni-hamburg.de

March 6th, 2017, Stuttgart

Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt and Norbert Ritter



Traditional Databases
No Request? No Data!

circular shapes

Query maintenance: periodic polling
→ Inefficient
→ Slow

45

What‘s the 
current state?



db.User.find()
.equal('room','B')
.ascending('name')
.limit(3)
.streamResult()

A B
C

x

y

Find people in Room B:

0 10 20

5

10

1. 

2.

3.

5 15 25

15

Wolle (22/8)

Erik (5/10)

Ideal: Push-Based Data Access
Self-Maintaining Results

46



Real-Time Databases



Overview:
◦ Real-time state synchronization across devices
◦ Simplistic data model: nested hierarchy of lists and objects
◦ Simplistic queries: mostly navigation/filtering
◦ Fully managed, proprietary
◦ App SDK for App development, mobile-first
◦ Google services integration: analytics, hosting, authorization, …

History:
◦ 2011: chat service startup Envolve is founded

→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)

◦ 2012: Firebase is founded
◦ 2013: Firebase is acquired by Google

Firebase

48



Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Tree data model: application state ̴JSON object
• Subtree synching: push notifications for specific keys only

→ Flat structure for fine granularity

→ Limited expressiveness!

49

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html


Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

50

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko


Overview:
◦ JavaScript Framework for interactive apps and websites

 MongoDB under the hood

 Real-time result updates, full MongoDB expressiveness

◦ Open-source: MIT license

◦ Managed service: Galaxy (Platform-as-a-Service)

History:
◦ 2011: Skybreak is announced

◦ 2012: Skybreak is renamed to Meteor

◦ 2015: Managed hosting service Galaxy is announced

Meteor

51



Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

poll DB every 10 seconds

forward
CRUD

52

?

!



Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data modifications
• Master-slave replication:

Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C

53



Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs
→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!
54



Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-score 

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!

55



Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

 Push-based queries (filters only)

 Joins (non-streaming)

 Strong consistency: linearizability

◦ JavaScript SDK (Horizon): open-source, as managed service

◦ Open-source: Apache 2.0 license

History:
◦ 2009: RethinkDB is founded

◦ 2012: RethinkDB is open-sourced under AGPL

◦ 2016, May: first official release of Horizon (JavaScript SDK)

◦ 2016, October: RethinkDB announces shutdown

◦ 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB

56



RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

• Range-sharded data
• RethinkDB proxy: support

node without data
• Client communication
• Request routing
• Real-time query matching

• Every proxy receives 
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

57

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962


Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse

58



Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

59

http://parseplatform.github.io/docs/parse-server/guide/#live-queries


Comparison by Real-Time Query
Why Complexity Matters

matching conditions ordering Firebase Meteor RethinkDB Parse

Todos created by „Bob“ ordered by deadline    

Todos
created by „Bob“

AND 
with status equal to „active“

   

Todos with „work“ in the name
   

ordered by deadline    

Todos
with „work“ in the name

AND 
status of „active“

ordered by deadline
AND

then by the creator‘s
name

   

60



Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

61

Database 
Management

Real-Time 
Databases

Data Stream 
Management

Stream 
Processing

Data persistent collections persistent/ephemeral streams

Processing one-time
one-time + 
continuous

continuous

Access random
random + 
sequential

sequential

Streams structured
structured, 

unstructured



Every database with real-time features suffers from several of these problems:
• Expressiveness:

• Queries
• Data model
• Legacy support

• Performance:
• Latency & throughput
• Scalability

• Robustness:
• Fault-tolerance, handling malicious behavior etc.
• Separation of concerns:

→ Availability: 
will a crashing real-time subsystem take down primary data storage?

→ Consistency: 
can real-time be scaled out independently from primary storage?

Discussion
Common Issues

62



Engineering Efforts: 
Add-On Real-Time Queries



Pub-Sub Pub-Sub

InvaliDB
External Query Maintenance

65



InvaliDB
Change Notifications

add changeIndex change remove

{ title: "SQL",

year: 2016 }

SELECT * 

FROM posts 

WHERE title LIKE "%NoSQL%" 

ORDER BY year DESC

66



InvaliDB
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine

Write op!

67

Match!



InvaliDB
Staged Real-Time Query Processing

Change notifications go through up to 4 
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑

68



InvaliDB
Low Latency + Linear Scalability

69



Research in Hamburg



Delivering Dynamic Content 
Two Bottlenecks: Latency und Processing

High 

Latency

Processing Time



Solution: Global Caching
Fresh Data from Ubiquitous Web Caches

Low Latency

Less Processing



Caching Dynamic Content
Now Feasible: Invalidating Updated Queries

1 0 11 0 0 10



 Push-based data access
◦ Natural for many applications

◦ Hard to implement on top of traditional (pull-based) databases

 Real-time databases
◦ Natively push-based

◦ Not legacy-compatible

◦ Barely scalable

 InvaliDB
◦ Add-On push-based queries

◦ Database-independent

◦ Linear scalability

◦ Filter, sorting, joins, aggregations

Wrap-up

30



Questions?


