The Case for Change Notifications
in Pull-Based Databases

Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt and Norbert Ritter

nvali =

RSPk e]
0DB

Wolfram Wingerath

wingerath@informatik.uni-hamburg.de
March 6th, 2017, Stuttgart

Traditional Databases
No Request? No Datal

What's the
current state?

circular shapes

Query maintenance: periodic polling
- Inefficient
- Slow

45

|deal: Push-Based Data Access

Self-Maintaining Results

Find people in Room B:

db.User.find()
.equal('room','B")
.ascending('name")

1imit(3)
.streamResult()
15 9 o)
A 10 o 5 °
5 Y
X LA
5 10 15 20

25

46

»)
/4 Y
S
e
-

Real-Time Databases
REgr ™ F 3

Firebase Firebase

Overview:

Real-time state synchronization across devices

Simplistic data model: nested hierarchy of lists and objects

Simplistic queries: mostly navigation/filtering

Fully managed, proprietary

App SDK for App development, mobile-first

Google services integration: analytics, hosting, authorization, ...
History:

2011: chat service startup Envolve is founded

— was often used for cross-device state synchronization
— state synchronization is separated (Firebase)

2012: Firebase is founded
2013: Firebase is acquired by Google

48

]

Firebase .
. o ¥ Firebase
Real-Time State Synchronization

* Tree data model: application state ~JSON object
« Subtree synching: push notifications for specific keys only

— Flat structure for fine granularity

— Limited expressiveness! / @

O 10¢

[llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

49

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase
Query Processing in the Client

* Push notifications for specific keys only
* Order by a single attribute
* Apply a single filter on that attribute

* Non-trivial query processing in client
— does not scale!

“chatll

“message_1

” Firebase

“message_2"

s name: “Frank”

—— message: “Hello. Anyone here?”

p— name; “Jeff”

m Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

— message: “Sorry, working on some AI”

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

50

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Meteor MET ER\\R

Overview:

JavaScript Framework for interactive apps and websites

- MongoDB under the hood

* Real-time result updates, full MongoDB expressiveness

Open-source: MIT license

Managed service: Galaxy (Platform-as-a-Service)
History:

2011: Skybreak is announced

2012: Skybreak is renamed to Meteor

2015: Managed hosting service Galaxy is announced

51

Live Queries
Poll-and-Diff

* Change monitoring: app servers detect relevant changes
— incomplete in multi-server deployment

» Poll-and-diff: queries are re-executed periodically
— staleness window P,
- does not scale with queries)

> ;I ‘
poll DB every 10 seconds
forward
monitor e — — - — o ¢ RUD _____
mcommg 1
writes METE\\\R | METE\\R !

I app server ' I app server |
A S A /

METE \\R

v

52

Oplog Tailing METE\\R

Basics: MongoDB Replication

* Oplog: rolling record of data modifications D

* Master-slave replication:

Secondaries subscribe to oplog write operation

.mongo cluster
(3 shards)

3 apply

propagate change

Secondary C1 Secondary C2 Secondary C3

53

Oplog Tailing
Tapping into the Oplog

* FEvery Meteor server receives
all DB writes through oplogs
— does not scale

query
(when in doubt)

D monito

METE\\R

.mongo cluster (3 shards)

anaryA Primary B PrlmaryC

(
I
I
I
I
\

&

—— oy

r _—— -\
| oplog
METE\R | METE\R
D 1 App ser r ' | App server
\

(\push relevant events

Bottleneck!

54

Oplog Tailing METE\\R

Oplog Info is Incomplete

What game does Bobby play?

— if baccarat, he takes first place!
— if something else, nothing changes!

Partial update from oplog:
{ name: ,Bobby"“, score: 500 }

Baccarat players sorted by high-score

ﬁ«fe'f E\R)

{ name: ,Joy"“, game: ,baccarat"“, score: 100 }
I 2. { name: ,Tim“, game: ,baccarat™, score: 90 }
I 3. { name: ,Lee"“, game: ,baccarat"“, score: 80 }

RethinkDB ¢)RethinkDB

Overview:
,MongoDB done right“: comparable queries and data model, but also:
- Push-based queries (filters only)
* Joins (non-streaming)
- Strong consistency: linearizability
JavaScript SDK (Horizon): open-source, as managed service
Open-source: Apache 2.0 license
History:
2009: RethinkDB is founded
2012: RethinkDB is open-sourced under AGPL
2016, May: first official release of Horizon (JavaScript SDK)
2016, October: RethinkDB announces shutdown
2017: RethinkDB is relicensed under Apache 2.0

56

RethinkDB

 Range-sharded data

* RethinkDB proxy: support
node without data
* Client communication
* Request routing

* Real-time query matching

* Every proxy receives
all database writes
— does not scale

N EE - - - - O . -

_— e o o o o . o - o o e o o o o .

App server App server

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017) I
m http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27) BOttleneCk'

m Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

-—ees e e . -

- e s o e

57

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Parse @ Parse

Overview:
Backend-as-a-Service for mobile apps
* MongoDB: largest deployment world-wide
- Easy development: great docs, push notifications, authentication, ...
* Real-time updates for most MongoDB queries
Open-source: BSD license
Managed service: discontinued
History:
2011: Parse is founded
2013: Parse is acquired by Facebook
2015: more than 500,000 mobile apps reported on Parse
2016, January: Parse shutdown is announced
2016, March: Live Queries are announced
2017: Parse shutdown is finalized

58

Parse @
LiveQuery Architecture Parse

* LiveQuery Server: no data, real-time query matching
* Every LiveQuery Server receives

all database writes

% dOES nOt Scale Parse LiveQuery Server

Event .
LiveQuery Subscribe Message Client
Message
[
Parse Server o

ParseObject
Update Message WebSockerServer |<

. . Subscriber i
. ParseObject ParseObije: Subscribe '
Publisher N Update Update Message Client
Parse Server > Rediy Parse LiveQuery Server

Event X
Client
Publisher q & Subscriber V
ParseObject Subscribe
Update Message WebSockerServer
L4
. Event
HeQuen Message Subscribe cront
Message

Bottleneck!

[llustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Comparison by Real-Time Query

Why Complexity Matters

Todos

Todos

Todos

Todos

created by ,Bob“

created by ,,Bob”
AND
with status equal to ,active”

with ,,work” in the name

with ,,work”in the name
AND
status of ,active”

ordered by deadline

ordered by deadline

ordered by deadline
AND

then by the creator’s
name

NN X N X

NN X N X

N N\ %

60

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

Database Real-Time | Data Stream | Stream
Management | Databases | Management | Processing
Data persistent collections persistent/ephemeral streams
. : one-time + :
Processing one-time : continuous
continuous
random + _
Access random . sequential
sequential
structured,
Streams structured
unstructured

ORACLE | Firebase [& PIPELINEDB| 5 storm
Po;stgreSQL METE \\R|= EsperTech | EiZ}

m %) RethinkDB |2 sqlstream &ank
@ Parse @ inﬂux data Spor{g Streaming

Discussion
Common Issues

Every database with real-time features suffers from several of these problems:

* Expressiveness:
* Queries
* Data model
* Legacy support
* Performance:
e Latency & throughput
* Scalability

* Robustness:
* Fault-tolerance, handling malicious behavior etc.

e Separation of concerns:
— Availability:
will a crashing real-time subsystem take down primary data storage?

— Consistency:
can real-time be scaled out independently from primary storage?

62

Engineering Efforts:
Add-On Real-Time Queries

InvaliDB

External Query Maintenance

9

— am - o o e o e oy
—-— e . e e e e o .

InvaliDB

Change Notifications

SELECT *

FROM posts

WHERE title LIKE "%NoSQLS%"
ORDER BY year DESC

{ title: "SQL"
year: 2016 }

i S — A —— T —

add changelndex change remove

’

66

InvaliDB
Filter Queries: Distributed Query Matching

SELECT * FROM posts WHERE tags CONTAINS 'NoSQL'

: : o S —
Two-dimensional partitioning: /”/ l N\,
° by Query m [qQuery | [Query | [Query |
3 Part.1 Part. 2 Part. 3
* by Object E 7
. . .) o —
—> scales with queriesand writes 3 3«
2 /1t
Implementation: Write op! ‘EO/ [Q2 W el
° Apache Storm }_‘ %E {change add remove %}
* Topology in Java - - L ——
POIOsY Match! —=)
* MongoDB query language o
* Pluggable query engine 5 & u ‘ "7‘
) C)

InvaliDB

Staged Real-Time Query Processing

Change notifications go through up to 4
query processing stages:
1. Filter queries: track matching status

— before- and after-images

2. Sorted queries: maintain result order
3. Joins: combine maintained results

I
|
|
1 Filtering
< Event! :
R
: Ordering
| a
]
|
I Joins
< Event! : \/]
\/ ! !
VvAggregation

4. Aggregations: maintain aggregations [D

>]

68

InvaliDB

Low Latency + Linear Scalability

80M

40M |-

20M

10M|

Throughput (ops/s)

5M

|| @@ 99th Percentile Latency <
|l 99th Percentile Latency < 20 ms
¢ 4 99th Percentile Latency <

25 ms

15 ms

Matching Nodes

16

69

Delivering Dynamic Content
Two Bottlenecks: Latency und Processing

" High
Latency

Solution: Global Caching
Fresh Data from Ubiquitous Web Caches

Low Latency

\QA'_—'. _________ &\Q\/g"'&\

Caching Dynamic Content
Now Feasible: Invalidating Updated Queries

-
- i

/,,” ” , \\\\ - ‘/
\(_ % //”__ N\
------ NV e
Q == a L N2 \\f_,—w
\/(Q” 7 \\\\/ ﬂ? :
IOIlIlIOIlIOIOIlI Q \‘l’/
4 ' —-—_’_‘- SO

-—
s \ - TR
_f, g N \¥
” - A S
- N
0y =

Wrap-up o TH

Push-based data access

Natural for many applications
Hard to implement on top of traditional (pull-based) databases

Real-time databases
Natively push-based
Not legacy-compatible
Barely scalable

InvaliDB

Add-On push-based queries
Database-independent

Linear scalability

Filter, sorting, joins, aggregations

30

