
The Case for Change Notifications
in Pull-Based Databases

Wolfram Wingerath
wingerath@informatik.uni-hamburg.de

March 6th, 2017, Stuttgart

Wolfram Wingerath, Felix Gessert, Steffen Friedrich, Erik Witt and Norbert Ritter

Traditional Databases
No Request? No Data!

circular shapes

Query maintenance: periodic polling
→ Inefficient
→ Slow

45

What‘s the
current state?

db.User.find()
.equal('room','B')
.ascending('name')
.limit(3)
.streamResult()

A B
C

x

y

Find people in Room B:

0 10 20

5

10

1.

2.

3.

5 15 25

15

Wolle (22/8)

Erik (5/10)

Ideal: Push-Based Data Access
Self-Maintaining Results

46

Real-Time Databases

Overview:
◦ Real-time state synchronization across devices
◦ Simplistic data model: nested hierarchy of lists and objects
◦ Simplistic queries: mostly navigation/filtering
◦ Fully managed, proprietary
◦ App SDK for App development, mobile-first
◦ Google services integration: analytics, hosting, authorization, …

History:
◦ 2011: chat service startup Envolve is founded

→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)

◦ 2012: Firebase is founded
◦ 2013: Firebase is acquired by Google

Firebase

48

Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Tree data model: application state ̴JSON object
• Subtree synching: push notifications for specific keys only

→ Flat structure for fine granularity

→ Limited expressiveness!

49

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

50

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Overview:
◦ JavaScript Framework for interactive apps and websites

 MongoDB under the hood

 Real-time result updates, full MongoDB expressiveness

◦ Open-source: MIT license

◦ Managed service: Galaxy (Platform-as-a-Service)

History:
◦ 2011: Skybreak is announced

◦ 2012: Skybreak is renamed to Meteor

◦ 2015: Managed hosting service Galaxy is announced

Meteor

51

Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

poll DB every 10 seconds

forward
CRUD

52

?

!

Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data modifications
• Master-slave replication:

Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C

53

Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs
→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!
54

Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-score

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!

55

Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

 Push-based queries (filters only)

 Joins (non-streaming)

 Strong consistency: linearizability

◦ JavaScript SDK (Horizon): open-source, as managed service

◦ Open-source: Apache 2.0 license

History:
◦ 2009: RethinkDB is founded

◦ 2012: RethinkDB is open-sourced under AGPL

◦ 2016, May: first official release of Horizon (JavaScript SDK)

◦ 2016, October: RethinkDB announces shutdown

◦ 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB

56

RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

• Range-sharded data
• RethinkDB proxy: support

node without data
• Client communication
• Request routing
• Real-time query matching

• Every proxy receives
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

57

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse

58

Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

59

http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Comparison by Real-Time Query
Why Complexity Matters

matching conditions ordering Firebase Meteor RethinkDB Parse

Todos created by „Bob“ ordered by deadline

Todos
created by „Bob“

AND
with status equal to „active“

Todos with „work“ in the name

ordered by deadline

Todos
with „work“ in the name

AND
status of „active“

ordered by deadline
AND

then by the creator‘s
name

60

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

61

Database
Management

Real-Time
Databases

Data Stream
Management

Stream
Processing

Data persistent collections persistent/ephemeral streams

Processing one-time
one-time +
continuous

continuous

Access random
random +
sequential

sequential

Streams structured
structured,

unstructured

Every database with real-time features suffers from several of these problems:
• Expressiveness:

• Queries
• Data model
• Legacy support

• Performance:
• Latency & throughput
• Scalability

• Robustness:
• Fault-tolerance, handling malicious behavior etc.
• Separation of concerns:

→ Availability:
will a crashing real-time subsystem take down primary data storage?

→ Consistency:
can real-time be scaled out independently from primary storage?

Discussion
Common Issues

62

Engineering Efforts:
Add-On Real-Time Queries

Pub-Sub Pub-Sub

InvaliDB
External Query Maintenance

65

InvaliDB
Change Notifications

add changeIndex change remove

{ title: "SQL",

year: 2016 }

SELECT *

FROM posts

WHERE title LIKE "%NoSQL%"

ORDER BY year DESC

66

InvaliDB
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine

Write op!

67

Match!

InvaliDB
Staged Real-Time Query Processing

Change notifications go through up to 4
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑

68

InvaliDB
Low Latency + Linear Scalability

69

Research in Hamburg

Delivering Dynamic Content
Two Bottlenecks: Latency und Processing

High

Latency

Processing Time

Solution: Global Caching
Fresh Data from Ubiquitous Web Caches

Low Latency

Less Processing

Caching Dynamic Content
Now Feasible: Invalidating Updated Queries

1 0 11 0 0 10

 Push-based data access
◦ Natural for many applications

◦ Hard to implement on top of traditional (pull-based) databases

 Real-time databases
◦ Natively push-based

◦ Not legacy-compatible

◦ Barely scalable

 InvaliDB
◦ Add-On push-based queries

◦ Database-independent

◦ Linear scalability

◦ Filter, sorting, joins, aggregations

Wrap-up

30

Questions?

