
Real-Time Databases Explained
Why Meteor, RethinkDB, Parse and Firebase Don‘t Scale

Wolfram Wingerath
ww@baqend.com
October 26, 2017



www.baqend.com

PhD studies:
• Real-Time Databases
• Stream Processing
• NoSQL Databases
• Database Benchmarking
• …

Baqend: 
High-Performance 

Backend-as-a-Service

Research 
& Teaching

Software 
Development

Wolfram 
Wingerath

Who I Am



Outline

• Pull-based data access
• Self-maintaining results

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Baqend Real-Time Queries
How do they scale?

3

…



Push-Based Data Access



Traditional Databases
No Request? No Data!

circular shapes ?

What‘s the 
current state?

Query maintenance: periodic polling
→ Inefficient
→ Slow

5



db.User.find()
.equal('room','B')
.ascending('name')
.limit(3)
.resultStream()

A B
C

x

y

Find people in Room B:

0 10 20

5

10

1. 

2.

3.

Wolle (21/4)

5 15 25

15

Wolle (19/13)Wolle (16/5)Wolle (22/8)Flo (4/3)

Erik (5/10)Erik (10/3)Erik (15/11)Erik (5/10)

Ideal: Push-Based Data Access
Self-Maintaining Results

6



Outline

• Meteor
• RethinkDB
• Parse
• Firebase
• Others

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Baqend Real-Time Queries
How do they scale?

7

…



Real-Time Databases



Overview:
◦ JavaScript Framework for interactive apps and websites

 MongoDB under the hood

 Real-time result updates, full MongoDB expressiveness

◦ Open-source: MIT license

◦ Managed service: Galaxy (Platform-as-a-Service)

History:
◦ 2011: Skybreak is announced

◦ 2012: Skybreak is renamed to Meteor

◦ 2015: Managed hosting service Galaxy is announced

Meteor

9



Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

repeat query every 10 seconds

?

forward
CRUD

10

!



Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data modifications
• Master-slave replication:

Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C

11



Oplog Tailing
Tapping into the Oplog

Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

13



Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-score 

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!

14



Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs
→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!
15



Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

 Push-based queries (filters only)

 Joins (non-streaming)

 Strong consistency: linearizability

◦ JavaScript SDK (Horizon): open-source, as managed service

◦ Open-source: Apache 2.0 license

History:
◦ 2009: RethinkDB is founded

◦ 2012: RethinkDB is open-sourced under AGPL

◦ 2016, May: first official release of Horizon (JavaScript SDK)

◦ 2016, October: RethinkDB announces shutdown

◦ 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB

16



RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

• Range-sharded data
• RethinkDB proxy: support node

without data
• Client communication
• Request routing
• Real-time query matching

• Every proxy receives
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

17

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962


Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse

18



Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

19

http://parseplatform.github.io/docs/parse-server/guide/#live-queries


Overview:
◦ Real-time state synchronization across devices
◦ Simplistic data model: nested hierarchy of lists and objects
◦ Simplistic queries: mostly navigation/filtering
◦ Fully managed, proprietary
◦ App SDK for App development, mobile-first
◦ Google services integration: analytics, hosting, authorization, …

History:
◦ 2011: chat service startup Envolve is founded

→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)

◦ 2012: Firebase is founded
◦ 2013: Firebase is acquired by Google

Firebase

20



Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Tree data model: application state ̴JSON object
• Subtree synching: push notifications for specific keys only

→ Flat structure for fine granularity

→ Limited expressiveness!

21

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html


Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

22

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko


23

Honorable Mentions
Other Systems With Real-Time Features



Outline

• System classification:
• Databases
• Real-time databases
• Stream management
• Stream processing

• Side-by-side comparison

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Baqend Real-Time Queries
How do they scale?

24

…



Discussion



Database 
Management

Stream 
Processing

Real-Time
Databases

26

Quick Comparison
DBMS vs. RT DB vs. DSMS vs. Stream Processing

Data Stream 
Management

static collections evolving collections
persistent/

ephemeral streams
ephemeral

streams

push-basedpull-based



Meteor
Poll-and-Diff Oplog Tailing

RethinkDB Parse Firebase Baqend

Scales with
write TP    

?


Scales with no. 
of queries     

Composite 
queries (AND/OR)      

Sorted queries     
(single attribute)



Limit      

Offset      

28

Wrap-Up
Direct Comparison



Outline

• InvaliDB: opt-in real-time 
queries

• System architecture
• Query expressiveness
• Performance & scalability
• Example app: Twoogle

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Baqend Real-Time Queries
How do they scale?

29

…



Baqend Real-Time Queries



Problem: Slow Websites
Two Bottlenecks: Latency and Processing

High 

Latency

Processing Overhead



Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing



New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10



How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

InvaliDB
Invalidating DB Queries



InvaliDB
Invalidating DB Queries

Server

Create
Update
Delete

Pub-Sub Pub-Sub

Real-Time
Queries

(Websockets)

Fresh Caches



Pub-Sub Pub-Sub

Baqend Real-Time Queries
Real-Time Decoupled

Keeps data up-to-date!
36

App Server



Baqend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through up to 4 
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑

37



Match!

Baqend Real-Time Queries
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine

Subscription!

Write op!

38



Linear Scalability Stable Latency Distribution

Baqend Real-Time Queries
Low Latency + Linear Scalability

Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17



var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.offset(20)
.limit(10);

query.resultList(result => ...);

query.resultStream(result => ...);

Static Query

Real-Time Query

Programming Real-Time Queries
JavaScript API





Accelerating Legacy Websites
Testing Future Performance



test.speed-kit.com



Website Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

PushPull

3rd Party
Services

Speed Kit
Baqend Caching for Legacy Websites

Website with
Snippet



Adding Speed Kit to a Site

Speed Kit
How to Use It



1. Configure Domain

Set which URLs Baqend
should accelerate.

Speed Kit
How to Use It



2. Include Code Snippet

Add the Speed Kit Service 
Worker to the website.

Speed Kit
How to Use It



3. Requests Accelerated

Speed Kit routes the requests
through Baqend‘s CDN.

Speed Kit
How to Use It



Publishers

E-Commerce Web Apps

Speed Kit
Works Across Tech Stacks

Does it work for you? Try it:
https://test.speed-kit.com/

https://test.speed-kit.com/


Speed Kit
Works For Publishers

Does it work for you? Try it:
https://test.speed-kit.com/

kicker.de

https://test.speed-kit.com/


Speed Kit
Works For Landing Pages

Does it work for you? Try it:
https://test.speed-kit.com/

molsoncoors.com

https://test.speed-kit.com/


Speed Kit
Works For E-Commerce

Does it work for you? Try it:
https://test.speed-kit.com/

alibaba.com

https://test.speed-kit.com/


Platform

Platform for building
(Progressive) Web Apps

15x Performance Edge

Faster Development

Speed Kit

Turns Existing Sites 
into PWAs

50-300% Faster Loads

Offline Mode

Baqend
Try It Out!

Does it work for you? Try it:
https://test.speed-kit.com/

https://test.speed-kit.com/


 Push-based Data Access 
◦ Natural for many applications

◦ Hard to implement on top of 
traditional (pull-based) databases

 Real-time Databases
◦ Natively push-based

◦ Not legacy-compatible

◦ Barely scalable

 Baqend Real-Time Queries
◦ No impact on OLTP workload

◦ Linear scalability

◦ Low latency

◦ Filter, sorting, joins, aggregations

Wrap-up

60



Our Related Publications

Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17

NoSQL Database Systems: A Survey and Decision Guidance
SummerSOC ‘16

Real-time stream processing for Big Data
it - Information Technology 58 (2016)

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Baqend Tech Blog (2017): https://medium.com/p/822ff87d2f87

The Case For Change Notifications in Pull-Based Databases
BTW ‘17

Scientific Papers:

Blog Posts:

Learn more at blog.baqend.com!

https://medium.com/p/822ff87d2f87
blog.baqend.com


We are hiring.

Contact us.

Wolfram Wingerath · ww@baqend.com · www.baqend.com

Frontend Developers
Mobile Developers

Java Developers
Web Performance Engineers


