
NoSQL OLTP Benchmarking: A Survey

Steffen Friedrich, Wolfram Wingerath, Felix Gessert, Norbert Ritter

Databases and Information Systems Group
University Hamburg

{friedrich, wingerath, gessert, ritter}@informatik.uni-hamburg.de

Abstract: In recent years, various distributed NoSQL datastores have been devel-
oped that offer horizontal scalability and higher availability than traditional relational
databases, but fewer querying options and only reduced consistency guarantees. The
diversity of the design space makes it difficult to understand the various performance
implications of individual system designs. Existing benchmarking tools measure some
relevant aspects, but do not capture all of them. In this paper, we give an overview of
the state-of-the-art in NoSQL OLTP benchmarking, identify missing features as well
as open challenges and point towards possible solutions.

1 Introduction

Traditional relational database management systems (RDBMSs) were designed to be the
one solution to all data management and storage problems and thus they all share a broad
foundation: They provide the full SQL spectrum (including joins) and are not highly avail-
able as they follow strongly consistent ACID semantics. Hence, these systems can be com-
pared reasonably well by benchmarks (e.g. TPC) that quantify their performance solely
along dimensions like throughput and request latency under realistic OLTP workload pat-
terns.

In recent years, however, a myriad of distributed NoSQL datastores have emerged that
promise to fill the growing gap between what highly distributed (web) applications re-
quire and what traditional RDBMSs can provide by sacrificing consistency guarantees and
querying options (hence the name) in favour of high availability and scalability. The de-
sign space is vast and the dependencies between desirable properties are complex. Even
though high-level abstractions such as the CAP Theorem [Bre00, GL02] or the PACELC
model [Aba12] can help to understand the basic trade-offs that are involved, the perfor-
mance implications of individual system designs are often not obvious, so that the optimal
data storage solution for an application cannot be chosen by simply comparing candidate
specifications. Representative benchmarking results are not available, though, as current
approaches do not capture all the relevant aspects and in many cases do not use realistic
workloads.

In this paper, we survey the in our opinion most relevant NoSQL OLTP benchmarks, point
out missing features, discuss open challenges and possible ways to approach them.



In Section 2, we survey current efforts in evaluating NoSQL database systems according
to request latency and throughput, availability and consistency in its various forms. We
briefly present a novel approach to benchmarking consistency in Section 3, give a summary
of open challenges and a conclusion in Section 4.

2 Comparing Distributed Datastores

Data in these distributed datastores are spread (sharded) across several servers (nodes). In
order to prevent data loss and to preserve availability in the presence of errors, data are also
replicated across several nodes. But sharding and replication have severe implications on
performance: While replication can increase read performance as the same data items are
available on several machines, it can also increase write latency (synchronous replication)
or give rise to stale reads or conflicting writes (asynchronous replication). Furthermore,
sharding introduces an overhead to operations that span data items on different nodes;
operations such as joins over datasets on different servers become infeasible and global
invariants are hard to maintain. As no single system can achieve all desirable properties at
once, each NoSQL datastore is optimised for a specific property set.
In the remainder of this section, we discuss different dimensions along which NoSQL
datastores can be evaluated and compared. First, we cover the most basic form of bench-
marking that translates to measuring raw performance in terms of request latency and
operational throughput, concentrating on YCSB as the most popular and widely accepted
benchmarking framework in the field of NoSQL OLTP benchmarking. We then consider
related work on the quantification of availability. Finally, we discuss different notions of
consistency in distributed databases and examine approaches towards their measurement.

2.1 Request Latency and Operational Throughput

The de facto standard for NoSQL OLTP benchmarking is the Yahoo Cloud Serving Bench-
mark (YCSB1) framework which was published in 2010 [CST+10]. Primarily targeting
key-value store functionality, YCSB is a highly generic general-purpose OLTP benchmark
that can easily be extended to support additional databases as it only requires the imple-
mentation of a simple CRUD interface (read, scan, insert, update, delete). In contrast to
other benchmarks such as TPC-C that evaluate system performance under realistic work-
loads, YCSB is built around the idea of examining different characteristics of a datastore
using distinct architectural tiers: A tested database is stressed with CRUD operations by
the YCSB Client to measure throughput, operations per second and request latency under
high load (performance tier). YCSB workloads do not model real-world applications, but
are customisable mixes of read/write operations that represent entire application classes:
Random distributions2 determine which operations are performed, which records are read-

1YCSB git repository: https://github.com/brianfrankcooper/YCSB
2YCSB supports uniform, multinomial and variants of Zipfian distributions.



/written, how frequently they are read/written and other workload details. The records that
are read and written consist of a number of (random) ASCII string attributes; the number
of columns and the size of each value can be configured. Scalability and elasticity can be
quantified by measuring the increase in performance as machines are added to the system
(scalability tier).
The generic workloads and the simple CRUD interface make YCSB suitable to explore
general trade-offs in a wide class of storage systems. But due to this simplicity, YCSB
does not account for functionality beyond that of simple key-value stores and abstracts
from many differences, such as data models. Seeing that many NoSQL systems actually
are highly specialised for particular distributed large-scale applications, a performance
evaluation for specific real-world tasks appears desirable. Furthermore, the single-node
client poses a scalability problem for benchmarking in large-scale environments as it can-
not saturate large distributed systems. Additional tiers for characteristics like availability,
replication or fault tolerance were proposed in the original contribution, but not imple-
mented in YCSB.

BG [BG13] is another benchmarking framework which, in contrast to YCSB, is still ac-
tively developed. It models actions in a social networking application and therefore pro-
vides a richer conceptual model and requires the implementation of a more complex in-
terface than YCSB for operations such as listing all friends of a given user or returning
the top-k posts on a user’s profile. In addition to throughput and latency measurements
as in YCSB, BG supports SLA (service level agreement) conformance checks: The So-
cial Action Rating (SoAR) represents the highest throughput that can be sustained without
violating a given SLA.

2.2 Availability

A partition-tolerant available system can always accept read and write requests by clients
and will eventually return a meaningful response, i.e. not an error message. However,
anomalies such as network partitions or server crashes occur on a daily basis in large
distributed environments and therefore data have to be replicated across different failure
domains, so that operation can be sustained in spite of such anomalies.
Since availability is of paramount importance for many applications, information on the
performance impact of different replication strategies during normal operation or in failure
scenarios are valuable.

The Under Pressure Benchmark (UPB) [FMdA+13] aims at quantifying and comparing
the availability of different distributed database systems by measuring the operational
throughput under three different configurations: with replication turned off and no fail-
ing nodes, with replication turned on and no failing nodes and with replication turned on
in the face of node failures. In every setting, the system under test is given some time to
stabilise (warming period) before measurements are made. In order to generate a heavier
workload than is possible with a single client, UPB uses several independent YCSB clients
in parallel and aggregates the results.
While it does manage to quantify the impact of replication on steady-state performance



during normal operation and after node failures, the UPB does not quantify availability
well, in our opinion, because the measurements do not reflect performance problems di-
rectly after node failure.

In a 2013 evaluation, Engber et al. [NE13, Eng13] measure the immediate impact of node
failures on operational throughput and therefore availability. Similarly to the UPB, they
aggregate the results of several independent YCSB clients after a short warming period.
As they induce node failure during measurement, the authors are able to observe real-time
behaviour such as downtime during failover, performance drops caused by load balancing
and, more generally, database performance before the system stabilises again.

2.3 Consistency

The CAP Theorem advertises that strong consistency is unachievable for a highly avail-
able system in the face of a partition, the underlying notion of strong consistency being
linearisability which translates to the guarantee that reads and writes are always executed
atomically and are sequentially consistent (linearisable [HW90]). In simple words, strong
consistency guarantees that all clients have the same view on the data at all times. Some
systems sacrifice availability to remain strongly consistent while others employ available,
but only eventually consistent models: In an eventually consistent (EC) system, all repli-
cas of a data item are guaranteed to converge in the absence of updates and partitions, i.e.
they will reach an identical state at some point in the future. The order in which individ-
ual writes are applied, though, is arbitrary and dependent writes may become visible out
of order. However, as demonstrated by current research [LFKA11, BGHS13], it is pos-
sible to simultaneously achieve EC and causal consistency (CC) at the cost of increased
staleness and additional complexity in comparison to plain EC. Informally, any two oper-
ations on a data item in a CC system are executed in the order they are received, if one of
them (directly or transitively) causally depends on the other.3 EC and CC are data-centric
consistency models that have their focus on the internal state of the storage system and
synchronisation between replicas, whereas inconsistencies that can be observed by clients
are captured by client-centric consistency models: Monotonic Read Consistency (MRC)
mandates that a client that has observed version n of a data item will never observe this
particular data item in a version less than n. Monotonic Writes Consistency (MWC) re-
quires that two updates issued by the same client are executed in the order that they arrive
at the storage system and Write Follows Read Consistency (WFRC) guarantees that an up-
date on a data item following a read of version n is never applied to versions less than n.
Under Read Your Writes Consistency (RYWC), a client that has written version n of a data
item will never observe this particular data item in a version less than n.
While strongly consistent systems display no inconsistencies with respect to neither order-
ing nor staleness and therefore provide all of the above-mentioned client-centric guaran-

3An operation o1 is directly causally dependent on another operation o2, if (1) the storage system receives o1
before o2 and both operations are issued by the same client or if (2) o1 is an update and o2 is a read that returns
the result of o1.



tees, many EC systems provide none4. Thus, it is hard to determine whether the advantages
of using an EC datastore outweigh the disadvantages of potentially stale or conflicting data
in a particular application scenario.

In this section, we discuss ways to compare different distributed databases with respect
to the ordering and staleness properties they exhibit. We also cover the notion of trans-
actional consistency known from ACID databases which differs from distributed replica
consistency and efforts in verifying consistency after system partitions.

2.3.1 Staleness

Given any highly available EC system, it is impossible to provide strict bounds on how
strongly the different replicas diverge or how long it will take them to reach agreement
once they are out of sync. However, various efforts have been made to predict or measure
staleness for different systems.

With the Probabilistically Bounded Staleness (PBS) prediction model, Bailis et al.
[BVF+12] estimate the expected bounds on staleness in Dynamo-style datastores with
respect to both versions and wall clock time on the basis of write propagation and read
messaging delays. They introduce the two metrics t-visibility for the probability of observ-
ing a write t time units after it returned and k-staleness for the probability of reading one
of the last k versions of a data item and then further combine them both in 〈k, t〉-staleness
consistency to encapsulate the probability of reading one of the the k latest versions of a
value, given the latest value was written at least t time units ago.
On the downside, PBS does not treat the system as a black box, but instead requires inter-
nal knowledge of the storage system (delays) and abstracts from implementation details; as
anti-entropy protocols such as read-repair or the use of Merkle trees are not taken into ac-
count, actually observed staleness may be less severe than predicted by PBS. Furthermore,
it is only applicable to a specific class of distributed databases.

In [WFZ+11], Wada et al. describe an experimental setup to measure time-based staleness
in different cloud databases. The authors describe different experimental configurations
that employ one reader and one writer which are hosted on the same virtual machine (VM),
on different VMs in the same datacentre and on VMs in different data centres: The writer
periodically writes its local time to a particular data item and the reader repeatedly retrieves
this item; on discovery of a new timestamp, the reader computes the observed staleness
window as the difference between its own local time and the observed timestamp.
As the authors do not mention whether or how the local clocks of writer and reader are
synchronised, we assume there to be no synchronisation. Under this assumption, all ex-
periments where writer and reader do not share the same machine are profoundly flawed,
because they might contain arbitrary measurement errors. The significance of the remain-
ing experiments appears limited as well since writer and reader might experience reduced
or no staleness at all, e.g. because they are routed to the same replicas.

To address this issue, Bermbach et al. [BT11, BT14] propose an extension to the approach
of Wada et al. that employs multiple readers: One writer periodically writes the current

4MRC, MWC and WFRC can be provided in an eventually consistent system. RYWC can not.



local timestamp and a version number, while each of several readers repeatedly polls the
storage system and logs its local read timestamp, the observed write timestamp and the
observed version number. In a subsequent analysis of all reader logs, t-visibility and k-
staleness are approximated under the assumption of perfect synchronisation of all client
clocks. In addition to their consistency measurement component, they also run a YCSB
workload with one YCSB client to saturate the storage system.
Similar to Wada et al., Bermbach et al. also rely on clock synchronisation through the
cloud provider and thus significantly diminish the reliability of their results: As they as-
sess themselves [BZS14], using local timestamps from different readers with potentially
drifting clocks may lead to misleading results.

In contrast to the studies discussed above, Golab and Rahman et al. [RGA+12, GLS11]
from HP Labs aim to measure the observed consistency under a given workload instead
of designing a workload to derive consistency properties. They criticise that other mea-
surement techniques introduce artificial operations (repeated reads) that tend to disrupt the
workload, stress the system under test considerably and thus may distort the results. They
formally define ∆-atomicity as a time-based consistency property that informally requires
a read operation to return a value that is at most ∆ time units stale. In other words, a system
provides ∆-atomicity, if every value becomes visible during the first ∆ time units after5

the acknowledgement of its write. Figure 1 illustrates the idea of how to compute the value
∆ for a given database history: Several read and write operations are executed on data item
x over time where the entirety of all operations regarding version i of x is referred to as
zone Zi. For each pair of zones that belong to the same data item and overlap in terms
of time, a value χ is computed that corresponds to the width of the respective staleness
windows. ∆ is the maximum of all χ values, i.e. the largest observed stainless window.
The goal of the authors’ experiments is to quantify the consistency that is provided by a
distributed datastore in terms of ∆-atomicity. The required information are collected by
extended YCSB clients that logs timing information for each operation.
Even though the workload design differs from the approaches discussed before, the ac-
tual measurements are very similar. While the precision of the described approach also
depends on clock synchronisation, the authors state the error margin to be “around 1ms”.

As part of the SLA conformance check, BG also quantifies the amount of stale and other-
wise inconsistent data that are observed during experiments. A BG workload is executed
by several distributed clients each of which operates on a logical partition of the dataset.
Every client is aware of the initial state of the data and each update operation and therefore
stale reads can be detected through log analysis.
While the different BG clients do not require clock synchronisation and do not suffer from
communication delays between reader and writer, staleness and other anomalies may not
be observable in some scenarios, as both read and writer share the same physical machine.
Given that reader and writer in real-world social networking applications are often globally
distributed, this appears as a major drawback in terms of realism.

An approach that does not rely on clock synchronisation is implemented in YCSB++
where multiple clients are coordinated via one central ZooKeeper server [HKJR10]. Most
notably, YCSB++ measures time-based staleness with multiple clients working together

5For ∆ > 0, ∆-atomicity is strictly weaker than atomicity which demands immediate visibility for any write.



Figure 1: Example computation of ∆
as the maximum of all χ values. Note
that there is no χ value betweenZ1 and
Z3 as the largest staleness window re-
garding x1 is determined by χ1.

Figure 2: YCSB++ benchmark coordination and consis-
tency measurement with Zookeeper

.

in a producer-consumer pattern as illustrated in Figure 2: Initially, the consumer client
subscribes (1.) to be notified by ZooKeeper as soon as a specific object is updated by
the producer. After the producer client has inserted or updated a record (2.), it publishes
(3.) the write to the ZooKeeper PubSub queue. The consumer client is notified (4.) via
ZooKeeper and then repeatedly requests the updated record (5.), until the new version is
returned.
To provide a lower bound for the actual inconsistency window, the delay between the first
attempt and the first successful attempt to read a record is measured by the consumer. To
keep the impact of client coordination on the experimental results minimal, only 1% of all
operations are subject to consistency measurements.

2.3.2 Ordering Guarantees

Knowledge about the order in which writes become visible can be derived from knowledge
about stale reads.
In [BVF+12], Bailis et al. capture the probability of MRC in the PBS prediction model.
Both Wada et al. [WFZ+11] and Bermbach et al. [BT14] compute MRC violations on the
basis of the log files generated during their staleness measurements. In addition, Bermbach
et al. also examine their experiment logs for violations of MWC and RYWC. To our knowl-
edge, no method for the quantification of WFRC violations has been proposed so far.

2.3.3 Transactions

Recently, a wealth of scalable transactional datastores have been proposed and imple-
mented. Examples of these systems are large-scale distributed systems like Megastore,
Spanner, Percolator and F1 from Google, key-value stores enhanced by atomic multi-key
transactions like COPS, Granole, G-Store and Hyperdex, as well as more general-purpose
commit protocols and transaction managers like MDCC or Omid.

Bailis et al. examine the design space for systems that provide ACID guarantees and high
availability at the same time in [BDF+13]. They identify Read Committed as an isolation



level that is often used in traditional single-node database systems and can be achieved in
a highly available transactional datastore. Furthermore, the authors state that lost updates
and write skew as well as concurrent updates and potentially unbounded staleness can
never be prevented in a highly available system.

To fill the gap between classic SQL-based transactional benchmarks (e.g. TPC-C) and
simple cloud service benchmarks, YCSB+T [DFNR14] was proposed. It adds to the
four tiers defined in the original YCSB contribution (performance, scalability, availabil-
ity and replication) by introducing two new tiers transactional overhead and consistency.
The Transactional overhead tier measures the latency of transactional operations (Read,
Scan, Insert, Update, Delete, ReadAndModify) and transaction demarcation (start, abort,
commit). To achieve this, a so-called Closed Economy Workload (CEW) is defined. It
simulates bank account transactions in a closed system where money neither enters nor
exits. This workload executes operations similar to YCSB but wrapped in a single trans-
actional context. For instance, doTransactionalReadModifyWrite reads two ac-
count records, transfers some money from one to the other and writes both records back.
To achieve this, the central contract between YCSB and the database, the DB interface,
is enhanced by (optional) transactional methods. The amount of concurrent transactions
is determined by YCSB’s threads parameter which defines how many threads execute the
workload in parallel. To ensure that no anomalies (e.g. Lost Updates) occur during work-
load execution, a validation phase is executed after the transaction (consistency tier). The
application-defined validation method takes the database state as an input and calculates
an anomaly score. For the CEW, this score is simply defined as the difference between
the initial and final sum of all accounts normalized by the amount of executed operations.
This score has a major problem: not only does it not detect dirty reads and non-repeatable
reads, it also catches only a fraction of all lost updates, as lost updates can easily occur
without any changes to the sum of all account balances.
The evaluation of YCSB+T demonstrates the usage for one particular system, but lacks a
comparison of different transactional datastores. Benchmarking different scale-out trans-
actional systems remains an important open issue in this field. YCSB+T furthermore does
not detect transaction anomalies, it is limited to verifying state-based consistency con-
straints. While measuring anomalies (i.e. isolation level compliance) has been studied for
single-server scenarios [FGA09] deriving a scheme for distributed transactional datastores
thus remains an open issue. Another open challenge is the inclusion of the availabil-
ity and replication tiers for transactional benchmarking. To decouple concurrency from
transaction sizes and amounts, it would also be desirable to construct a benchmark which
allows for more complex configurations than a one-to-one mapping between threads and
transactions.

2.3.4 Consistency in the Face of Partitions

Informally, partition tolerance is the ability of a system to sustain operation in the pres-
ence of message loss between the nodes. As partitions are generally unavoidable, partition
tolerance is guaranteed by virtually all NoSQL databases.
While availability in failure scenarios has already been addressed by several studies, only



little work has been done on whether NoSQL databases keep their promise to remain con-
sistent during and after partitions. In his Call Me Maybe blog post series6, Kyle Kingsbury
examines several widely used distributed systems and their behaviour on the network par-
titions, revealing that many do not comply with their marketing claims and actually lose
data where they should not. To this end, he presents Jepsen7, an open-source project that
facilitates injecting failures and running tests in a virtualised distributed environment.
Through his work, Kingsbury uncovers misunderstandings and implementation errors in
existing database systems.

3 Our Approach

To provide strict bounds on staleness, we are working on an approach that takes up the
idea of YCSB++ to provide a lower bound for the staleness window and extends it by
measuring an upper bound. The basic concept of our approach is illustrated in Figure 3:

Figure 3: Our multi-client consistency measuring approach employs decentralized PubSub queuing
to measure lower and upper bounds for staleness.

Similar to YCSB++, our experimental setup comprises at least one producer and one con-
sumer client as well as, of course, one datastore. One physical machine can take the role
of the producer for one data item and the role of the consumer for another. Furthermore,
several consumer clients can be used to measure the staleness window of the same data
item. Instead of handling communication through centralised messaging (ZooKeeper in
the YCSB++ approach), we use decentralized client-side messaging. Prior to the start of
an experiment, a consumer subscribes (1.) to be notified as soon as a specific data item
is updated by the producer. The producer writes (2.) the data item and publishes (3.) the

6Call me maybe blog post series: http://aphyr.com/tags/jepsen.
7Jepsen: https://github.com/aphyr/jepsen



write to its local queue, so that the every consumer is notified (4.) to repeatedly read (5.)
the item, until the new value is observed. If a consumer reads the new version of a stale
value, he notifies the producer (6.). This allows us to compute an upper bound for the stal-
eness window this of particular read operation as the difference between the producer’s
timestamps directly after the consumer notification (6.) and directly before the write (2.).
Apart from preventing contention, reducing latency and to simplifying the process of set-
ting up an experiment in comparison to YCSB++, using local messaging queues eliminates
network latency altogether, if producer and consumer share the same physical machine.
Furthermore, our approach does not rely on clock synchronisation and provides actual
bounds for the actual inconsistency window that a client experienced. It should be noted,
though, that a valid upper bound can only be yielded under the assumption of MRC; in
the absence of MRC guarantees, the consumer client can request (.5) the data item for a
longer time in order to increase the probability of observing MRC violations, if they exist.

4 Conclusion and Open Challenges

NoSQL OLTP benchmarking ist an active research topic and the boundaries of what is
achievable in the field of distributed databases are being probed by both scientists and
practitioners. Arguably, the most popular and most widely accepted OLTP benchmark
for NoSQL databases is YCSB which facilitates measuring operational throughput and
request latency for generic CRUD workload mixes. YCSB’s obvious strong points are an
easy-to-implement database interface, easy-to-use design and easy-to-extend architecture.
On the other hand, its highly generic design can also be seen as a drawback since it does
not account for functionality beyond simple CRUD and therefore does not capture the
performance of datastores well that offer more sophisticated operations. It is also possible
to model real-world applications like BG does, but this restricts applicability.

Several aspects of availability such as the effect of replication on steady-state performance
or system performance during node failure and recovery have already been addressed in
experimental evaluation. The differences between the available replication strategies and
their respective configurations have not been studied to full extent as far as we are aware.

As data-centric consistency cannot be measured without internal knowledge of the storage
system, only client-centric approaches seem viable for generic benchmarking frameworks.
Client-centric consistency in distributed systems can be measured along two dimensions:
Staleness describes the time during which an acknowledged write is not applied and or-
dering refers to the order in which writes become visible to clients.
An inherent issue with benchmarking consistency in a distributed system, however, is
that distributed measurement is also subject to imprecision through network latency and
clock synchronisation. Several approaches to deal with these issues can be found in the
literature: Having reader and writer of the data item under consideration share the same
machine eliminates the communication delay, but also may lead to unrealistic results. Dis-
tributing reader and writer over separate physical machines, in contrast, necessitates clocks
synchronisation or leads to latency values that either include or ignore network delays.



One rationale in workload design is to measure only observed inconsistency, while the
other is to introduce artificial operations to increase the precision of the results. An inter-
esting question is whether the latter approach can actually lead to an observer effect.
To our knowledge, only little work has been done on the quantification of ordering guaran-
tee violations. Until recently, the transactional consistency provided by a datastore has not
been addressed by experimental evaluation. YCSB+T is an important first step towards
transactional benchmarking of scale-out datastores and provides a useful basis for quanti-
fying the overhead introduced by wrapping CRUD operations in a transaction. However,
the inclusion of the availability and replication tiers for transactional benchmarking which
have already been proposed in the original YCSB paper remain open issues.

Ongoing work shows that aspects of performance like availability and consistency can be
quantified, but individual experiments only cover small parts of the vast space of possible
experiment configurations. For example, the impact of different failure scenarios or (wide-
area) replication strategies on both availability and consistency still need to be examined.
Further, the integration of existing approaches into a comprehensive and widely applicable
benchmarking suite is an important goal of future work.

References

[Aba12] D. Abadi. Consistency Tradeoffs in Modern Distributed Database System Design:
CAP is Only Part of the Story. Computer, 45(2):37–42, Feb 2012.

[BDF+13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Highly Available Transactions: Virtues and Limitations. PVLDB, 7(3):181–
192, 2013.

[BG13] Sumita Barahmand and Shahram Ghandeharizadeh. BG A Benchmark to Evaluate
Interactive Social Networking Actions. In CIDR, 2013.

[BGHS13] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on Causal Con-
sistency. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 761–772, New York, NY, USA, 2013.
ACM.

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems., 2000.

[BT11] David Bermbach and Stefan Tai. Eventual Consistency: How Soon is Eventual? An
Evaluation of Amazon S3’s Consistency Behavior. In Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing, MW4SOC ’11, pages 1:1–1:6, New
York, NY, USA, 2011. ACM.

[BT14] David Bermbach and Stefan Tai. Benchmarking Eventual Consistency: Lessons
Learned from Long-Term Experimental Studies. In Proceedings of the 2nd IEEE In-
ternational Conference on Cloud Engineering (IC2E). IEEE, 2014. Best Paper Runner
Up Award.

[BVF+12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and
Ion Stoica. Probabilistically bounded staleness for practical partial quorums. Proc.
VLDB Endow., 5(8):776–787, April 2012.



[BZS14] David Bermbach, Liang Zhao, and Sherif Sakr. Towards Comprehensive Measure-
ment of Consistency Guarantees for Cloud-Hosted Data Storage Services. In Raghu-
nath Nambiar and Meikel Poess, editors, Performance Characterization and Bench-
marking, volume 8391 of Lecture Notes in Computer Science, pages 32–47. Springer
International Publishing, 2014.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, pages 143–154, New York, NY,
USA, 2010. ACM.

[DFNR14] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rhm. YCSB+T: Benchmark-
ing Web-scale Transactional Databases. In Proceedings of International Workshop on
Cloud Data Management (CloudDB’14), Chicago, USA, 2014.

[Eng13] Ben Engber. How to Compare NoSQL Databases: Determining True Performance and
Recoverability Metrics For Real-World Use Cases. Presentation at NoSQL matters
2013, 2013.

[FGA09] Alan Fekete, Shirley N. Goldrei, and Jorge Pérez Asenjo. Quantifying Isolation
Anomalies. Proc. VLDB Endow., 2(1):467–478, August 2009.

[FMdA+13] Alessandro Gustavo Fior, Jorge Augusto Meira, Eduardo Cunha de Almeida, Ri-
cardo Gonalves Coelho, Marcos Didonet Del Fabro, and Yves Le Traon. Under Pres-
sure Benchmark for DDBMS Availability. JIDM, 4(3):266–278, 2013.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[GLS11] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing Consistency Properties
for Fun and Profit. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, PODC ’11, pages 197–206, New York,
NY, USA, 2011. ACM.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[LFKA11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM.

[NE13] Denis Nelubin and Ben Engber. NoSQL Failover Characteristics: Aerospike, Cassan-
dra, Couchbase, MongoDB. Technical report, Thumbtack Technology, 25 Broadway,
Floor 9, New York, 2013.

[RGA+12] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton, and
Jay J. Wylie. Toward a Principled Framework for Benchmarking Consistency. In Pro-
ceedings of the Eighth USENIX Conference on Hot Topics in System Dependability,
HotDep’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX Association.

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data Consistency
Properties and the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspec-
tive. In CIDR’11, pages 134–143, 2011.


